K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2024

Program: B. Tech. Scheme IIB

Regular & Backlog Examination: TY Semester

Course Code: EXC504 and Course Name: Random Signal Analysis

Duration: 02.5 Hours

Max. Marks: 60

Instructions:

(1)All questions are compulsory.

Date of Exam: 27/11/2024

- (2)Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

Q. No.	Question	Max. Marks	СО	BT level
<u>u</u> .	Solve any two questions out of three: (05 marks each)	10		23 E 123 E 123 E
a)	In a box, there are four tags numbered 1 and six tags numbered 2. There are two urns U1 and U2 containing 3 red and 7 black balls and 8 red and 2 black balls respectively. One tag is drawn from the box and none ball is drawn from the urn whose number is found on the tag drawn. Calculate the probability that a red ball is drawn.	ene bei si La avid eda galed	1	Ap
b)	A hospital switch board receives an average of 4 emergency calls in a 10 minutes interval. Compute the probability that i) there are atmost 2 emergency calls ii) there are exactly 3 emergency call in an interval of 10 minutes?		2	Ap
c)	If the probability density function of X is $fx = e^{-x}$, $x>0$, Determine the probability density function of $Y=2$ x +1.	resident	3	Ap
Q 2.	Solve any two questions out of three: (05 marks each)	10		
a)	A two dimensional Random variable (X,Y) has the joint density $f(x,y)=24xy$; $x>0,y>0$, $x+y\leq 1$ =0; otherwise calculate marginal density function of x and conditional probability density function of Y for given X.	A (SE O	4	Ap
b)	Compute autocorrelation function of a random process given by $X(t)=a\cos(bt+Y)$, where a,b are constants and Y is a uniform random variable on $(-\pi,\pi)$.		5	Ap
c)	Consider a Markov Chain with 2 states and transition probability matrix of a Markov chain is given by	ennaka n cesy	6	Ap

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2024

Program: B. Tech. Scheme IIB#

Regular & Backlog Examination: TY Semester Course Code: EXC504 and Course Name: Random Signal Analysis

Date of Exam: 27/11/2024

Duration: 02.5 Hours Max. Marks: 60

	$P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}$ Calculate stationary probabilities.			
Q 3.	Solve any two questions out of three. (10 marks each)	20		
a)	In a communication system, '0' is transmitted with probability 0.4 and a one is transmitted with probability 0.6. Due to noise in the channel, a zero can be received as one with probability 0.1 and as a zero with probability 0.9 similarly, one can be received as zero with probability 0.1 and as a one with probability 0.9. i) if a one is observed, Determine the probability that a zero was transmitted? ii) compute probability that '1' was transmitted given that '1' was received?		1	Ap
b)	The joint pdf of random variable X,Y is given by $f(x,y) = k e^{-3x-5y}$; $X \ge 0, y \ge 0$ $f(x,y) = 0$; elsewhere a) Calculate value of k, the marginal pdf of X and Y, b) compute $E[X/Y]$.		4	Ap
c)	If a random process $\{x(t)\}$ is given by $X(t) = A \cos(w_0t + \theta)$ where θ is uniformly distributed over $(-\pi, \pi)$, prove that $\{x(t)\}$ is correlation ergodic.		5	Ap
Q 4.	Solve any two questions out of three. (10 marks each)	20	no vill	dester
a)	X is a normal variate with mean 30 and standard deviation 5. Compute the probabilities that i) $26 \le X \le 40$, ii) $X \ge 45$, iii) $ X - 30 \ge 5$.		2	Ap
b)	Let X be a continuous random variable with uniform probability density function in $(0,2\pi)$, calculate probability density function and distribution function of Y= cosX.		3	Ap
c)	The Transition Probability matrix of a Markov Chain{Xn},n=1,2,3 having three states 1,2 and 3 is: $P = \begin{bmatrix} 0.2 & 0.5 & 0.3 \\ 0.5 & 0.4 & 0.1 \\ 0.3 & 0.4 & 0.3 \end{bmatrix}$ The Initial Probability distribution is $p^{(0)}=(0.6,0.3,0.1)$ Calculate i)P(X ₂ =2) ii)P(X ₂ =3)iii)P(X ₃ =2,X ₂ =3,X ₁ =3, X ₀ =2)		*6	Ap