K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2024-25

B. Tech. Program: Electronics and Telecommunication Engg. Scheme: IL:

Regular Examination: LY Semester VII

Course Code: EXC701 and Course Name: Microwave Engineering

Date of Exam: 26 11 24

Duration: 2.5 Hours

Max. Marks: 60

Instructions:

(1). All questions are compulsory.

(2) Draw neat diagrams wherever applicable.

(3). Assume suitable data, if necessary.

Q. No.	Question	Max. Mark s	СО	BT
Q 1	Solve any two questions out of three: (05 marks each)	10		
a)	Discuss different characteristics of microwaves.		1	2
b)	State various modes of Gunn diode and explain any one of them		3	2
c)	What is meant by RADAR range?	No.	6	2
Q 2	Solve any two questions out of three: (05 marks each)	10		
a)	Write a short note on rectangular waveguide. Teflon (ϵ_r = 2.1) filled rectangular waveguide has following parameters a=3 cm, b= 1.5 cm. Calculate cut-off frequency for dominant mode.		2	3
b)	Draw and explain the functional diagram of magnetron oscillator.		4	2
c)	Summarize the double minimum method of VSWR measurement using microwave bench.		5	2
Q.3	Solve any two questions out of three. (10 marks each)	20		
a)	Match a load impedance of $Z_L = 60$ - j80 to a 50 Ω line using a double stub tuner. The stubs are open circuited and are spaced $\lambda/8$ apart. The match frequency is 2 GHz. (use smith chart)		2	3
b)	i. What are bulk properties of a GUNN diode that give rise to negative resistance like characteristics? (3 M) ii. Draw the structure of BARITT diode and explain its working. (3 M) iii. Derive the S-matrix of four port microwave circulator. (4 M)		3	3
(c)	List the measuring instruments to measure microwave frequency. Explain the method of microwave frequency using direct and indirect methods.		5	2
Q.	time out of three (10 marks each)	20		

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2024-25

B. Tech. Program: Electronics and Telecommunication Engg. Scheme: II

Regular Examination: LY Semester VII

Course Code: EXC701 and Course Name: Microwave Engineering

Date of Exam: 26 11 24

Duration: 2.5 Hours

Max. Marks: 60

a)	i.	Explain the working principal of two cavity Klystron as amplifier using neat labelled diagram. (5 M)		4	3
	ii.	A two cavity klystron amplifier has the following parameters: (5 M) $V_0 = 1200 \text{ V}$, $R_0 = 30 \text{ K}\Omega$, $I_0 = 25 \text{ mA}$ and $f = 10 \text{ GHz}$.			
		 Gap spacing in either cavity: d = 1 mm. Spacing between two cavities L = 4 cm. Effective shunt impedance, excluding beam loading: R_{sh} = 30 KΩ. a) Solve for an input gap voltage to give maximum voltage. b) Solve for the voltage gain neglecting the beam loading in the 			io l
		output cavity. c) Solve for the efficiency of the amplifier neglecting the beam loading. Note: For maximum V2, J ₁ (X) = 0.582 at X = 1.841.	ip owi	ne ella	119
b)	Constr	Construct the wave equation for a TM wave and obtain all field components in a rectangular waveguide.		3	3
c)	i.	Explain MTI radar. (3 M)		5	2
	ii.	Define: Pulse repetition frequency (PRF), Pulse repetition Time (PRT) and Maximum unambiguous range. (3 M)		(= 1) (= 1)	-
	iii.	List the medical application of Microwaves. Explain microwave hyperthermia and diathermy. (4 M)			