K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

FEB-2025 Supplementing Exam. Nev - Dec 2024

.Program: B. Tech. Scheme- IIB /II Regular & Backlog Examination: TY Semester: V

Course Code: EXC504 and Course Name: Random Signal Analysis

Duration: 02.5 Hours Date of Exam: 27/11/2024

Max. Marks: 60

Instructions:

04/02/2025

Q.	Question	Max. Marks	СО	BT level
Q 1	Solve any two questions out of three: (05 marks each)	10	particular particular	
a)	A box contains 7 red ball and 3 black balls and Another box contains 4 red balls and 5 black balls. One ball is transferred from the first box to second box and then a ball is drawn from the second box. If this ball happens to be red, Calculate the probability that a black ball was transferred.		1	Ap
b)	State any five properties of Distribution function		2	U
c) .	If probability density function of X is $f(x) = e^{-x}$, $x>0$. Compute probability density function of $Y=X^3$		3	Ap
Q2	Solve any two questions out of three: (05 marks each)	10	ma de	18
a)	Random Variable X and Y have joint probability density function $f(x,y) = (x-y)^2 / 40 , -1 < x < 1, -3 < y < 3$ $= 0 , elsewhere$ Determine Marginal probability density function of X and Y.		4	Ap
b)	state five properties of autocorrelation function.		5	U
c)	Transition probability(p) of matrix of a Markov chain with three states 1,2,3 is given by 0.5 0.4 0.1 0.3 0.4 0.3 0.2 0.3 0.5		6 %	Ap

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

FEB 2025 Nov Dec 2024 Supplementing .Program: B. Tech. Scheme- IIB /II

Regular & Backlog Examination: TY Semester: V Course Code: EXC504 and Course Name: Random Signal Analysis

Date of Exam: 27/11/2024

Max. Marks: 60 Duration: 02.5 Hours

	04/02/1005	The second second		
Q.3	Solve any two questions out of three. (10 marks each)	20	and the	
a)	In a communication system, '0' is transmitted with probability 0.45 and a one is transmitted with probability 0.55. Due to noise in the channel, transmitted 1 is received as a 0 and vice versa.	li ,elidə bi	1	Ap
	If the probability that a transmitted 0 is correctly received as 0 is 0.9 and probability that a transmitted 1 is correctly received as 1 is 0.8 i) if a one is observed, compute the probability that a zero was transmitted? ii) Compute probability that '1' was transmitted given that '1' was received? iii) compute probability that error has occurred	insug wer	om spå	
b)	If $X=\cos\theta$, $Y=\sin\theta$, where θ is uniformly distributed over $(0,2\pi)$ prove that i) X and Y are uncorrelated. ii) X and Y are not independent.	i find a ne U elabor	4	Ap
c)	Compute autocorrelation function and power spectral density of random process $\{x(t)\}$ is given by $X(t) = a\cos(bt+\theta)$ where a and b are constant and θ is uniformly distributed over $(-\pi,\pi)$.	nuset ett muset ett	5	Ap
Q.4	Solve any two questions out of three. (10 marks each)	20	TOB SY	08 26
a)	Compute mean, variance, moment generating function of binomial distribution.	elopine V	2	Ap
b)	If X and Y are two independent random variables and if Z=X + Y then calculate the probability density function of Z.	0= =	3	Ap
c)	State and prove chapmann Kolmogorov equation.		6	Ap
