K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov / Dec 2024 Jan Feb 2025

Supplementary (B. Tech.) Program: EXTC Scheme :- II

Regular Examination: TY

Course Code: EXC503 and Course Name: Discrete Time Signal Processing

Date of Exam: 02/12/2024 Duration: 02.5 Hours Max. Marks: 60

Q. No.		Max. Marks	СО	BT leve
Q 1	olve any two questions out of three: (05 marks each)		Mal S	336
a)	Sketch the frequency response and identify the following filters based on their pass band.	of trune of	COI	U
	$H(Z) = \frac{z-1}{z+1}$		Lyn.	FRA -
b)	An analog filter transfer function is $H(s) = \frac{2}{s^2 + 3s + 2}$		CO3	A
	Determine H(Z) using Bilinear Transformation technique for T=1 second.		La rea	
c)	Explain DTMF analysis.		CO6	U
Q 2	Solve any two questions out of three: (05 marks each)	10	S.LUno.	MSF.
i)	Calculate DFT of x(n)={2,4,5,3,6,8,0,12}	2 (445)	CO2	U
)	Differentiate FIR and IIR filter with	20 z II	CO3	A
:)	For second order IIR filter, $H(z) = \frac{1}{\left(1+0.5z^{-1}\right)\left(1-0.45z^{-1}\right)}$ Study the effect of shift in pole location with 3-bit coefficient representation in direct form.		CO5	A
2.3	Solve any two questions out of three. (10 marks each)	20	-	
	Draw direct form-I and form-II structure of the filter given below. $H(Z) = \frac{0.1768 - 0.5305Z^{-1} + 0.5305Z^{-2} - 0.1768Z^{-3}}{1 - 0.0732Z^{-1} + 0.3348Z^{-2} - 0.0067Z^{-3}}$		CO4	A

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

	Jan Feb	Nov / Dec 2025	
	D T-LI	Program: EXTC Scheme :- II	
Supplimentary Examination	in TV		Semester: V
Course Code: EXC503		Course Name: Discre	te Time Signal Processing
Date of Exam: 02/12/2024	8/2/2025	Duration: 02.5 Hours	Max. Marks: 60

b)	Explain application of DSP processor in bio medical applications.		CO6	U
c)	A discrete time invariant linear system is described by the differe equation,	nce	CO1	U
	y(n) = 2 x(n) + x(n-1)			
	obtain Impulse Response, Frequency Response, Sketch Magnitude and Phase Response	or to our sup a	17 1221	
Q.4	Solve any two questions out of three. (10 marks each)	20	Wac M	end
a)	An LTI system is characterized by the difference equation $y(n)=(y(n-1)+0.15x(n))$. The input signal $x(n)$ has a range of -5V to represented by 8-bits. Find the quantization step size, variance of error signal and variance of quantization noise at the output.	-5 V,	CO5	A
b)	Design a linear phase FIR high pass filter using hamming wind with cutoff frequency $\omega c = 0.8 \pi$ rad/samples by taking 7 samples	dow s.	CO2	U
c)	Design a Butterworth digital IIR low pass filter using Bili Transformation by taking T = 0.5 second, to satisfy follow specifications.	near	CO3	A
	$0.707 \le H(e j\omega) \le 1$ $0 \le \omega \le 0.45\pi$	rainfulting	Al way	NEXT I
	$ H(e j\omega) \le 0.2$ $0.65 \pi \le \omega \le \pi$	134L 64 347	estimen	and
	A 1800 Harrison L. S. C. C. L. 1218.	rates 3.14 titles	o these	923