ComplIT/AI-DE Som III

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Man / Feb 2025

Supplementary Regular Examination: SY Semester: III Program: B. Tech Scheme: III

Course Code: AIC301_III and Course Name: Applications of Mathematics in Engineering-I

Date of Exam: 03-02-25 Duration: 02.5 Hours Max. Marks: 60

Instructions:

(1)All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

Q. No	Question	Max. Marks	СО	BT
Q 1	Solve any two questions out of three: (05 marks each)	10		
a)	Find $L(t^2e^{3t}\sin 4t)$	mine months	COI	03
b)	Find the Fourier series of $f(x) = \begin{cases} x + \frac{\pi}{2} & -\pi < x < 0 \\ \frac{\pi}{2} - x & 0 < x < \pi \end{cases}$	n Turus consideration	CO3	03
c)	Fit a straight line to the following data and estimate the value of y for $x = 3.5$		CO5	03
	x 0 1 2 3 4 y 1 1.8 3.3 4.5 6.3			Lings
Q2	Solve any two questions out of three: (05 marks each)	10	Sales Siles	
a)	Using partial fraction method, find $L^{-1}\left(\frac{3s+1}{(s+1)(s^2+2)}\right)$	a to propries	CO2	03
b)	Construct an analytic function $f(z) = u + iv$ by using Milne Thompson method whose imaginary part is $v = e^{-x}(y\sin y + x\cos y)$.	n's	CO4	03
c)	If X denotes the outcome when a fair die is tossed, find M.G.F. of X aborigin hence find μ'_1 , μ'_2 , $V[X]$.	out	CO6	03
2.3	Solve any two questions out of three. (10 marks each)	20	7	2.619
)	i) Evaluate $\int_0^\infty e^{-t} \left(t \int_0^t e^{-4u} \cos u du \right) dt$	6	CO1	03
	ii) Find $L\left(\frac{d}{dt}\left(\frac{\sin 3t}{t}\right)\right)$	4		
)	i) Find the Fourier series of $f(x) = \frac{1}{2}(\pi - x)$ in $(0, 2\pi)$.	6	CO3	03

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Program: B. Tech Scheme: III

Regular Examination: SY Semester: III

Course Code: AIC301_III and Course Name: Applications of Mathematics in Engineering-I Date of Exam: 03-02-25

Duration: 02.5 Hours

Max. Marks: 60

	ii) Obtain Fourier series of $f(x) = 1 - x^2$ in (-1,1)									4		
c)	i) Fit a second degree parabolic curve to the following data and estimate the production in 1982									6	CO5	03
	Year(X)	1974	1975	1976	1977	1978	1979	1980	1991			
	Producti on(Y) (in tons)	12	14	26	42	40	50	52	53			
	ii) Obtain the rank correlation coefficient from the following data									4	SILV LYILE	
	X 10		12 18				15	40		(+)	14 3 3/	(P
	Y	12	18	25	2	25	50	25				
2.4	Solve any two questions out of three. (10 marks each)									20		
a)	i) Using convolution theorem, find $L^{-1}\left[\frac{1}{s^2(s+a)^2}\right]$									6	CO2	03
	ii) Find $L^{-1}\left(\log\left(\frac{s^2+a^2}{s^2+b^2}\right)\right)$									4		
b)	i) Find the analytic function $f(z) = u + iv$ in terms of z, if $u - v = x^3 + x^2 - 3xy^2 - y^2 - 3x^2y + y^3 - 2xy$									6	CO4	03
	ii) Find k such that $f(z) = \frac{1}{2}\log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$ is analytic.								4			
c)	i) A box contains three biased coins A, B and C. The probability that a head will result when A is tossed is 1/3, when B is tossed, it is 2/3 and when C is tossed, it is 3/4. If one of the coins is chosen at random and is tossed 3 times, head resulted twice and tail once. What is the probability that the coin chosen was A?									6	CO6	03
	ii) A continuous random variable has probability density function $f(x) = k(x - x^2)$, $0 \le x \le 1$ Find i) k ii) mean iii) variance									4		