II/AJ. DS/COMP

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2024-25

(B. Tech / M. Tech.) Program: Information Technology_Scheme III

AZC301

Regular Examination: SY/Semester: III

Course Code: _ITC301 and Course Name: Applications of Mathematics in Engineering-1
Date of Exam: 23-12-2024 Duration: 2.5 Hours Max. Marks: 60

(1)Al (2)Di	uctions: Il questions raw neat di ssume suita	agran	ns whe	rever a		le.							
Q. No.	Question									Max. Marks	СО	BT level	
Q I	Solve any two questions out of three: (05 marks each)								10				
a)	Evaluate the integral using the Laplace transform $\int_0^\infty e^{-t} \left(\frac{\cos 6t - \cos 4t}{t}\right) dt$									1	3		
b)	Obtain Fourier series of $f(x) = x \text{ in } (-\pi, \pi)$.									3	3		
c)	1% of women at age forty who participate in routine screening have cancer. 80% of women with cancer will get positive mammographies. 9.6% of women without cancer will also get positive mammographies. A woman in this age group had a positive mammography in a routine screening, what is the probability that she actually has cancer?									6	3		
Q2	Solve any two questions out of three: (05 marks each)								10				
a)	Show that $u = 4xy - 3x + 2$ is a harmonic function. Find its harmonic conjugate and the corresponding function.									4	3		
b)	In a contest for a search for Mr. Puerto Princesa City 2024, two judges gave their ratings to 8 candidates. Compute the coefficient of rank correlation.								5	3			
	Judge	1	97	96	94	89	88	87	84	84			
	Judge	2	93	96	97	94	91	89	88	84			1
c)	Find the inverse Laplace Transform of $\frac{s^2+2s+3}{(s^2+2s+5)(s^2+2s+2)}$									2	3		
Q.3	Solve any two questions out of three. (10 marks each)								20				
a)	Find the Laplace transform of the following functions (i) $\cos 3t \cos 2t \cos t$ (ii) $\int_0^t u \left(\frac{\sin u}{a^u}\right)^2 du$.							5+5	1	3			

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2024-25

(B. Tech / M. Tech.) Program: Information Technology_Scheme III
Regular Examination: SY/Semester: III

Course Code: _ITC301 and Course Name: Applications of Mathematics in Engineering-1

Date of Exam: 23-12-2024 Duration: 2.5 Hours Max. Marks: 60

b)	(i) If the mea	5	6	3						
	X 8 12 16 20 24									
	P(X = x)	- 1/8	m	n	1/4	1/12				
	(ii) The daily consumption of electric power is a random variable x with probability density function $f(x) = \begin{cases} kxe^{\frac{-x}{3}}, x > 0 \end{cases}$. Find the value of k, the expectation of x, and the probability that on a given day electric consumption is more than the expected value.								6	3
c)	(i) Find an analytic function $f(z) = u + iv$ in terms of z if $u - v = x^3 + x^2 - 3xy^2 - y^2 - 3x^2y + y^3 - 2xy$.								4	3
	(ii) Find the constants a,b,c,d,e if $f(z) = (ax^4 + bx^2y^2 + cy^4 + dx^2 - 2y^2) + i(4x^3y - exy^3 + 4xy)$							4	4	3
Q.4	Solve any two questions out of three. (10 marks each)									
a)	(i) Obtain the Fourier series for the function, $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} \dots = \frac{\pi^2}{8}$						7	3	3	
	(ii) Find the fourier coefficients a_0 and a_n for the function $f(x) = x^2$ in the interval $0 \le x \le a$.							3		
)	(i) Find $L^{-1}\left(\frac{s^2}{\left(s^2+a^2\right)^2}\right)$ by using convolution theorem							7	2	3
	(ii) Find the inverse Laplace Transform of $\frac{4s+12}{s^2-4s+12}$								2	3
)	(i) Find the correlation coefficient between x and y ,when the lines of regression $are: 2x - 9y + 6 = 0$, $x - 2y + 1 = 0$ (3marks) (ii) For 10 randomly selected observations, the following data were observed:						manleal	3 7	5%	4
	Overtime hrs Additional uni Fit a second de		5	3						