K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov. - Dec 2024

Scheme: III/IL Program: B. Tech, Regular Examination: FY, Semester: I

Course Code: BSC101 and Course Name: Engineering Mathematics-I

Date of Exam:13-Jan-2025

Duration: 02.5 Hours

Max. Marks: 60

Instructions:

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.
- (4) Write numerical values in decimals not in fractions.

(5) V	Vrite numerical values till four decimal places			
Q. No.	Question	Max. Marks	СО	BT leve
Q 1	Solve any two questions out of three: (05 marks each)	10		
a)	Reduce the following matrix to normal form and find its rank			
	$\begin{bmatrix} 3 & 2 & 5 & 7 & 12 \\ 1 & 1 & 2 & 3 & 5 \\ 3 & 3 & 6 & 9 & 15 \end{bmatrix}$	5	5	3
	[3 3 6 9 15]			
b)	Prove that $\sin^5 \theta = \frac{1}{16} [\sin 5 \theta - 5 \sin 3 \theta + 10 \sin \theta].$	5	1	3
c)	Separate into real and imaginary parts $tan^{-1}(e^{i\theta})$	5	2	3
Q 2	Solve any two questions out of three: (05 marks each)	10		
a)	If $z = x^y + y^x$, verify that $\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial x \partial y}$	5	3	3
b) .	Find the n th derivative of $\frac{2}{(x-1)(x-2)(x-3)}$	5	4	3
c)	Prove that $\sec^2 x = 1 + x + \frac{2x^4}{3} + \dots$	5	6	3
Q.3	Solve any two questions out of three. (10 marks each)	20		

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov. - Dec 2024

Program: B. Tech, Scheme: III/II

Regular Examination: FY, Semester: I

Course Code: BSC101 and Course Name: Engineering Mathematics-I

Date of Exam:13-Jan-2025

Duration: 02.5 Hours

Max. Marks: 60

a)	(i) Solve the following equations	5		
	$x_1 + x_2 - x_3 + x_4 = 0$, $3x_1 + x_2 + x_4 = 0$, $x_1 + 3x_2 + 2x_3 + 4x_4 = 0$. (ii) Test for consistency of the following equations and solve if consistent $x_1 - 2x_2 + x_3 - x_4 = 2$, $x_1 + 2x_2 + 2x_4 = 1$, $4x_2 - x_3 + 3x_4 = -1$.	5	5	3
b)	Show that the roots of the equation $(x+1)^6 + (x-1)^6 = 0$ are given by $-i \cot \left[\frac{(2k+1)\pi}{12}\right], k=0,1,2,3,4,$	10	. 1	3
c)	If $u + iv = \frac{1}{i} log(\frac{1 + ie^{i\theta}}{1 - ie^{i\theta}})$, prove that $u = \frac{\pi}{2}$ and $v = log(sec\theta + tan\theta)$	10	2	3
Q.4	Solve any two questions out of three. (10 marks each)	20		•
a)	If $u = \sin^{-1} \left[\frac{x^{\frac{1}{3}} + y^{\frac{1}{3}}}{x^{\frac{1}{2}} + y^{\frac{1}{2}}} \right]^{\frac{1}{2}}$, prove that $x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \frac{\tan u}{144} \left[tan^{2} u + 13 \right]$	10	3	3
b)	Examine the function $f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ for extreme values.	10	4	3
c)	Solve the following equations by Gauss-Seidel method, 15x + 2y + z = 18,2x + 20y - 3z = 19,3x - 6y + 25z = 22	10	6	3
