K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2024

Program: B.Tech Scheme: III & III

Regula Examination: FY Semester: I

Course Code: BSC102 and Course Name: Engineering Physics

17-01-2025 Duration: 02 Hours N Max. Marks: 45 Date of Exam: 17-01-2025

2) Dra	questions are compulsory. we neat diagrams wherever applicable. sume suitable data, if necessary.	187	a i ma a jiha di bi gurando a sa sa s	
		Max. Mark s	CO	BT level
Q 1	Solve any 5 questions out of six.	15		
i)	Draw the following planes in side cubic unit cell - (1 2 3), (110), (231)	3	CO2	U-
ii)	How is Newton's ring experiment used to determine refractive index of liquid?	3	CO4	U
iii)	Explain De Broglie hypothesis on the basis of Bohr's postulate.	3	CO1	U.
iv)	n-type Ge sample has donor concentration $10^{21}/\text{m}^3$ and thickness = 3 mm is used in a Hall effect experiment set up. If B = 0.5 T, J = 500 A/m ³ , Find Hall voltage.	3	CO3	App
v) -	What are advantages of using super capacitors?	3	CO6	U
vi)	A superconducting tin has a critical temperature of 3.7 K at zero magnetic field and a critical field of 0.0306 Tesla at 0 K. Find the critical field at 2 K.	3	CO5	App
Q.2	Solve any three questions out of four.	15		
i)	Derive one dimensional Schrodinger's Time Independent wave equation for matter waves.	5	CO1	U
ii)	An electron is trapped in a one dimensional box of length $1A^0$. Calculate the energy required to excite the electron from its ground state to the 1^{st} excited state.	5	CO1	App

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2024

Program: B.Tech Scheme: III / II

Regula Examination: FY Semester: I

Course Code: BSC102 and Course Name: Engineering Physics

17-01-2025 Duration: 02 Hours N Max. Marks: 45 Date of Exam: 17-01-2025

iii)	Explain principle, construction and working of a Light Emitting Diode on the basis of energy band diagram.	5	CO3	U
iv)	With a neat diagram, show the position of Fermi level in intrinsic semiconductor, n-type semiconductor and p-type semiconductor energy band diagram. What is the probability of an electron being thermally excited to conduction band in intrinsic Si at 27 °C. The band gap energy of Si is 1.12 eV.	3	CO3	App
Q.3	Solve any three questions out of four.	15		· 我们 ""。"
i)	Obtain the relation between angle of wedge and fringe-width in wedge shaped film experiment.	5	CO4	U
ii)	State and explain Meissner's effect. Why superconductor is termed as a perfect diamagnet?	5	CO5	U
iii)	How can we determine crystal structure with observations obtained using Bragg's X-ray spectrometer?	5	CO2	U
iv)	A glass plate having thickness of 0.4×10^{-4} cm is illuminated by a beam of white light normal to the plate (refractive index for glass = 1.5). Calculate the wavelength within the limits of visible spectrum (4000 A ⁰ to 7000 A ⁰) which will be intensified in the reflected beam.	5	CO4	App