K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

End Semester Examination: January 2025

Program: M. Tech (Artificial Intelligence)

Scheme: II

Regular Examination: FY

Semester: I

Course Code: Building Blocks of Artificial Intelligence

Course Name: PCEC101

Date of Exam: 22/01/2025

Duration: 2.5 Hours

Max. Marks: 60

Instructions:

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

Ques. No.	Question	Max. Marks	со	BT Leve
Q1	Solve any two questions out of three: (05 marks each)			
a)	Sketch State Space Search for Tic Tac Toe problem.		1	U
b)	Sketch the architecture of a Neural Network for COVID prediction.	10	3	U
c)	Consider the following two Fuzzy Sets <i>A</i> and <i>B</i> defined on the universal set $X = \{1,2,3,4,5\}$ and perform the fuzzy operations on them: $A = \{(1,0.2), (2,0.5), (3,0.8), (4,1.0), (5,0.6)\}$ $B = \{(1,0.7), (2,0.4), (3,0.6), (4,0.3), (5,0.9)\}.$		5	A
Q2	Solve <u>any two</u> questions out of three: (05 marks each)	10		
a)	Differentiate soft and hard computing.		2	AN
b)	Consider a genetic algorithm where the solution space is represented by the chromosomes: Chromosome 1: 11010110 and Chromosome 2: 10111001 Apply single-point crossover between Chromosome 1 and Chromosome 2 at crossover point at position 5 and perform mutation on the first offspring by flipping the 5 th bit. Provide the resulting offspring chromosomes.		4	Α
c)	Analyze the need of hybrid systems.		6	AN
Q3	Solve any two questions out of three. (10 marks each)			
a)	Consider the following graph available with a user: A B B D A Apply Depth-First Search algorithm to obtain the Graph's traversal sequence with node D as the source. Show all steps.	20	1	U

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

End Semester Examination: January 2025

Program: M. Tech (Artificial Intelligence)

Scheme: II

Regular Examination: FY

Semester: I

Course Code: Building Blocks of Artificial Intelligence

Course Name: PCEC101

Date of Exam: 22/01/2025

Duration: 2.5 Hours

Max. Marks: 60

b)	Consider a fully-connected multilayer feed-forward neural network with architecture 3-2-1. Let the learning rate be 0.7. Assume weights and bias as mentioned below:		3	U
c)	Analyze the need for combining Genetic Algorithms (GA) and Neural Networks (NN), and explain the hybrid GA-NN approach.	A STATE OF THE STA	6	AN
Q4	Solve <u>any two</u> questions out of three. (10 marks each)			
a)	For the below use cases, state and justify whether to apply supervised or unsupervised learning algorithms: a. Identify abnormal server behavior in a network to detect potential cyberattacks. b. Predict a student's final grade based on their past academic performance and attendance records.		2	AN
b)	Apply Genetic Algorithm for solving Traveling Salesman Problem.		4	A
c)	Consider a fuzzy system that defines the water level in a reservoir using the following trapezoidal membership function for the label "Moderate": $\mu_{\text{Moderate}}(x) = \begin{cases} 0 & \text{if } x \leq 50 \text{ or } x \geq 150, \\ \frac{x-50}{20} & \text{if } 50 < x \leq 70, \\ 1 & \text{if } 70 < x \leq 120, \\ \frac{150-x}{30} & \text{if } 120 < x < 150. \end{cases}$	20	5	A
pl.	 where x is the water level in centimeters. Perform the following: a. Calculate the membership value of the "Moderate" water level for the following values: 60 cm, 100 cm, and 140 cm. b. Based on your calculations, explain how the fuzzy membership function applies to these water level values. 			
