K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May-June 2025

(B. Tech) Program: EXTC Scheme 1/II/UB/III

Regular: FY/SY/TY/LY Semester: VIII
Course Code: EXDLC8033 and Course Name: Autonomous Vehicle

Max. Marks: 60 Duration: 02.5 Hours Date of Exam:23rd May 2025

I)All	tions: questions are compulsory. w neat diagrams wherever applicable.	- 1		
3)Ass 2. No.	Question	Max Mar ks	C O	BT level
2.1	Solve any two questions out of three: (05 marks each)	10		
21	Explain Value of characteristic of use cases of valet parking with block diagram.	5	2	Ü
n) o)	Explain Value of Characteristics Explain Velocity measurement with two chirp using Radar	5	1	U
c)	Explain velocity measurements and CAN Bus and CAN bus transmission multiple nodes connected to CAN Bus.	5	3	U
Q 2	Solve any two questions out of three: (05 marks each)	10		
a)	Explain how maps are represented in autonomous vehicle.	5	6	U
b)	A 3-wheeled holonomic robot has its omni-wheels placed 120° apart in a circular configuration. Each wheel can exert a force and move in its own direction. The robot is instructed to move with a velocity vector Where, Each wheel is at a distance R=0.2m from the centre. Determine the velocity each wheel must have to achieve this motion.	10	4	A
c)	What is the role of steering feel Emulator in steering by wire design?	5	1	U
Q.3	entions out of three (10 marks each)	20		
a)	For FMCW radar, chirp bandwidth is 150 MHz, its duration is 0.1ms, carried frequency is 77 GHz and beat frequency is 300 kHz (difference between transmitted and received frequency:. A) Determine the range of RADAF B) Calculate the velocity resolution if the radar uses 128 chirps for Dopple processing and the chirp repetition interval is 1 ms.	₹.	6	A
b)	-alibration with Example.	10		1 U

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May-June 2025

* (B. Tech) Program: EXTC Scheme */II/WB/Wf Regular: FY/SY/TY/LY Semester: VIII

Course Code: EXDLC8033 and Course Name: Autonomous Vehicle
Date of Exam:23rd May 2025 Duration: 02.5 Hours Ma

Max. Marks: 60

c)	In a modern vehicle, several Electronic Control Units (ECUs) communicate using a 500 kbps CAN bus. Consider 3 nodes (ECUs) talking same time.	10	4	Α
	Node (ECU) ECU A: Engine Control Engine RPM data Ox0C0 2 bytes Ox1F, 0xA4 (RPM Data) Ox3C, 0x10, 0x00, 0x05 ECU C: Airbag Control Crash detection alert Explain the CAN data frame and transmission on CAN Bus. Calculate the total time of CAN bus transmission for ECUA.			
Q.4	Solve any two questions out of three. (10 marks each)	20		
a)	Explain High Definition map creation Process.	10	5	U ş
b)	How does the chirp duration and sweep slope impact radar performance? How does the chirp duration and sweep slope impact radar performance?	10	2	Ú
c)	Explain system software architecture of the DragonFly vehicle perception, decision-making, control, and communication. How do these modules interact to achieve autonomous navigation and obstacle avoidance.	10	6	U