Aug 2025 (Supplementary) Cassy - On

B. Tech Program: Electronics and Telecommunications Scheme: IIB

Duration: 02.5 Hours

- Regular Examination: TY Semester: V

Date of Exam:11th 25

c)

 $0011)_{2}$.

Course Code: EXC502_IIB Course Name: Digital VLSI Design Max. Marks: 60

nstructions: 1) All questions are compulsory. 2) Draw neat diagrams wherever applicable. 3) Assume suitable data, if necessary. BT Marks CO 10 Solve any two questions out of three: (05 marks each) 21 Explain output VI characteristics of an nMOS with a proper diagram. CO1 R a) CO₂ U Explain the problem of CMOS latch up in a CMOS inverter. b) CO4 Design NOR based ROM to store the following data: 1001, 0001, 0111, 0010 Ap c) 10 Solve any two questions out of three: (05 marks each) 02 CO₃ Ap Realize 4:1 Mux, using transmission gate design style. a) Draw a block diagram of 4-bit Ripple Carry Adder. If the delay of a block is 2 ns, calculate CO₅ Ap b) the total delay. CO6 Ap Differentiate between HLSM and FSM. c) 20 Solve any two questions out of three. (10 marks each) Q.3 CO₁ U For an nMOS, a) i. What are the different types of capacitances? Show all the capacitance components with a proper diagram. (05 Marks) ii. Write an expression for the capacitance values of an nMOS transistor given the following parameters: channel length L, channel width W, channel overlap length L_D , diffusion depth x_i and oxide capacitance per unit area C_{ox} . (05 Marks) U CO₄ Draw and explain 1T DRAM cell. Explain Read 1 and Write 0 operation. b) CO6 CDesign a soda dispenser machine using RTL design technique. c) 20 Solve any two questions out of three. (10 marks each) 0.4 CO₂ U Derive expressions for V_{IL} and V_{OL} in CMOS Inverter. a) Realize the following expression using static CMOS design style. Also draw the stick CO₃ Ap b) diagram following the Euler's path. $Y = \overline{(A + BC)}$

CO₅

Ap

Explain the principle of operation of Carry Select Adder. Demonstrate the addition of the

following numbers using the same principle, (1001 0010 1001 1110)₂ and (0011 0101 1000