K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

July-Aug 2025

'(B. Tech) Program:EXTC Scheme I/II/IIB/III:

Regular/Supplementary Examination:TY Semester: V

Course Code: EXC 503 and Course Name: Discrete Time Signal Processing

Carry On

Date of Exam: 2

Duration: 02.5 Hours

Max. Marks: 60

Instructions:

- (1) All questions are compulsory.
- (2)Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

Q. No.	Question	Max. Marks	СО	BT level
Q 1	Solve any two questions out of three: (05 marks each)	10		
a)	Classify the given impulse response as minimum, maximum or mixed phase system $h1(n)=\{1,0.707,0.25\}$ and $h2(n)=\{1,-5,6\}$	a.	COI	R
b)	Compute 4-point FFT of the sequence, $x(n) = \{0,2,3,-1\}$ using DIT-FFT method		CO2	U
c)	Find the conversion from S to Z domain in bilinear transformation		CO3	U
Q 2	Solve any two questions out of three: (05 marks each)	10	, and the second	
a)	Draw structure of FIR band stop filter with the range of frequencies 2.5kHz to 3.8kHz by taking 5 samples	, a	CO4	A
b)	Compare truncation and rounding method		CO5	R
c)	Explain DTMF in digital signal processing	. 8	CO6	U
Q.3	Solve any two questions out of three. (10 marks each)	20		
i)	Check the type of filter using magnitude plot response $y(n) = x(n) + 2x(n-1) + x(n-2)$		COI	U
ii)	Determine the poles of low pass Butterworth filter for N=4 Sketch the location of poles on s-plane and find normalized transfer function		CO4	U
iii)	Study second order IIR filter $H(z) = \frac{1}{(1-0.5z^{-1})(1-0.45z^{-1})}$ the shift in pole with 3-bits in direct form realization.		CO5	U
Q.4	Solve any two questions out of three. (10 marks each)	20		

Page 1 of 2

Seat No.:

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Carry On

July-Aug 2025

(B. Tech) Program: EXTC Scheme I/II/IIB/III: TRegular/Supplementary Examination: TY Semester: V

Course Code: EXC 503 and Course Name: Discrete Time Signal Processing

Date of Exam: 25/08/23 Duration: 02.5 Hours Max. Marks: 60

i)	Determine the response using DIT FFT in LTI system the input $x(n)=\{1,2,3\}$ and impulse response $h(n)=\{-1,-1\}$.	France S	CO2	U
ii)	Realize the structure of FIR band pass filter to pass the frequencies in the range of 0.4π to 0.65π rad/sample by taking 07 samples using rectangular window		CO3	A
iii)	Explain ECG signal analysis in DSP in detail		CO6	U

Page 2 of 2

Seat No.: