

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

(B. Tech / M. Tech.) Program: Artificial Intelligence & Data Science Scheme:-IIB

Course Code: AIC305 and Course Name: Discrete structure & Data Science

Date of Exam: 02 07/25

Duration: 02.5 Hours

Max. Marks: 60

Instructions:

- (1)All questions are compulsory.
- (2)Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

Q. No.	Question	Max. Marks	СО	BT level
Q 1	Solve any two questions out of three: (05 marks each)	10		
a)	Using Laws of Logic find if the given statement $[(p\rightarrow q)\land \sim q]\rightarrow \sim p$ is a tautology or contradiction		CO1	An
b)	Define partition set. Let $S=\{1,2,3,4,5,6,7,8,9\}$. Determine whether or not the following is a partition of S . (i) $\{\{1,2,5\},\{3,6\},\{4,8,9,7\}\}$ (ii) $\{\{1,5\},\{2,4,6,8\},\{7,9\}\}$		CO2	An
c)	Draw Hasse diagram for D_{30} . Give Proper steps for the same. Give Chain and Antichain if exists.		CO3	Ap
Q 2	Solve any two questions out of three: (05 marks each)	10		
a)	Explain Extended Pigeon hole principle. Show that 7 colours are used to paint 50 bicycles, at least 8 bicycles will be of same color		CO4	Ap
b)	Prove that set $G = \{1,2,3,4,5,6\}$ is a finite abelian group of order 6 with respect to multiplication module 7		CO5	An
c)	Explain Isomorphic Graphs. Determine if the given graphs are isomorphic graphs or Not. Give Proper steps and one-one correspondence.		CO6	Ap

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

June 2025

(B. Tech/M. Tech.) Program: Artificial Intelligence & Data Science Scheme:-IIB

Course Code: AIC305 and Course Name: Discrete structure Data Science

Date of Exam: 02/07/26 Duration: 02.5 Hours Max. Marks: 60

Q.3	Solve any two questions out of three. (10 marks each)	20		
a)	Prove using Mathematical induction $1^{2}+2^{2}+3^{2}+\dots+n^{2}=n \ (n+1) \ (2n+1) \ / \ 6$		CO1	Ap
b)	Solve the Recurrence relation: $a_n = -3a_{n-1}a_{n-2} - a_{n-3}$ with $a_0 = 5, a_1 = -9, a_2 = 15$		CO4	Ap
c)	Let $H = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ be a parity check matrix. i) Compute the encoding function $e_H: B^2 \rightarrow B^5$ Decode the following words relative to a maximum likelihood decoding function i)01111 ii)01110 iii)11001		CO5	Ap
2.4	Solve any two questions out of three. (10 marks each)			
)	Let $f: R \rightarrow R$, $f(x)=x2-1$, $g(x)=4x^2+2$ find (i) fo(gof) (ii)go(fog)		CO2	Ap
	Find the greatest lower bound and least bound of the set $\{3,9,12\}$ and $\{1,2,4,5,10\}$ if they exist in the Poset $(z+/)$ where / is the relation of divisibility.		CO3	An
	Define Eulerian path, Eulerian Circuit, Hamiltonian Path and Hamiltonian Circuit with proper example. Mention the same for the given Graph(if exists)		CO6	Ap