

(c)

K. J. Somaiya Institute of Technology, Sion, Mumbai-22
(Autonomous College Affiliated to University of Mumbai)

<u>Carry on</u>	Nov-Dec 2024	June 2025
	(B. Tech.) Program: EXTC Scheme I/II/IIB/III:	
	Regular/Supplementary Examination: TY/ Semester: V	
	Course Code: EXC503 and Course Name: Discrete Time Signal Processing	

Date of Exam: 02/12/2024 30/06/2025 Duration: 02.5 Hours Max. Marks: 60

Instructions:					
Q. No.	Question	Max. Marks	CO	BT level	
Q 1	Solve any two questions out of three: (05 marks each)	10			
a)	Explain how the location of zeros in the complex plane affects the classification of a system as maximum-phase. What are the consequences for frequency response?		CO1	U	
b)	Compute the DFT of the sequence $x[n] = \{1, 2, 3, 4, 5, 6\}$.		CO2	U	
c)	Discuss sub-band coding of speech signals.		CO6	U	
Q 2	Solve any two questions out of three: (05 marks each)	10			
a)	Design digital IIR filter using IIM method. Given: Analog filter with system transfer function		CO3	A	
	$H(s) = \frac{10}{s^2 + 7s + 10}$				
	Given: $F_s = 1$ Hz				
b)	Draw and explain the Cascade Form realization of an FIR filter?		CO4	A	
c)	Compare floating point with fixed point arithmetic.		CO5	U	
Q.3	Solve any two questions out of three. (10 marks each)	20			
a)	Write short note on i)Notch Filter ii)Comb Filter		CO1	U	
b)	Realize the cascade and parallel structure of the filter-		CO4	A	
	$H(z) = \frac{10(1 - \frac{1}{2}z^{-1})(1 - \frac{2}{3}z^{-1})(1 + 2z^{-1})}{(1 - \frac{3}{4}z^{-1})(1 - \frac{1}{8}z^{-1})[1 - (\frac{1}{2} + j\frac{1}{2})z^{-1}][1 - (\frac{1}{2} - j\frac{1}{2})z^{-1}]}$				

K. J. Somaiya Institute of Technology, Sion, Mumbai-22
(Autonomous College Affiliated to University of Mumbai)

<u>Carryon</u>		<u>Nov-Dec 2024</u>	<u>June 2025</u>	
(B. Tech.) Program: EXTC Scheme I/II/IIB/III:				
Regular/Supplementary Examination: TY/ Semester: V				
Course Code: EXC503 and Course Name: Discrete Time Signal Processing				
Date of Exam: 02/12/2024 [30/06] 2025 Duration: 02.5 Hours		Max. Marks: 60		
c)	Consider the LTI system governed by the equation- $y(n)+0.8301y(n-1)+0.7348y(n-2)=x(n-2)$ Discuss the effect of coefficient quantization on pole locations, when the coefficients are quantized by 3-bits by truncation.		CO5	A
Q.4	Solve any two questions out of three. (10 marks each)	20		
a)	If $x(n) = \{2, 1, 2, 1, 1, 2, 1, 2\}$. Find $X(k)$ using Radix-2 DIT-FFT algorithm.		CO2	U
b)	Design a linear phase FIR low pass filter using hamming window with cutoff frequency $\omega_c = 0.1\pi$ rad/samples by taking 9 samples.		CO3	A
c)	Write short note on-Dual Tone Multi-Frequency Signal Detection with example.		CO6	U
