

K. J. Somaiai Institute of Technology, Sion, Mumbai-22
(Autonomous College Affiliated to University of Mumbai)

~~Nov-Dec 2024~~ ~~May-June-2024~~

Program: B. Tech Scheme IIB/II

~~Carey on~~ Regular & Backlog Examination: TY Semester: V

Course Code: EXC504 and Course Name: Random Signal Analysis

Duration: 02.5 Hours

Max. Marks: 60

Date of Exam: ~~27/11/2024~~

Instructions: ~~27/10/2024~~

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

Q. No.	Question	Max. Marks	CO	BT level
Q 1	Solve any two questions out of three: (05 marks each)	10		
a)	State and Prove Baye's theorem	1	U,Ap	
b)	If 10% of pens manufactured by a company are defective, compute probability that a box containing 12 pens containing i) exactly two defective pens ii) atleast two defective pens. (use binomial distribution).	2	Ap	
c)	If the probability density function of X is $f_x = e^{-x}$, $x > 0$, calculate the probability density function of $Y = \sqrt{X}$.	3	Ap	
Q 2	Solve any two questions out of three: (05 marks each)	10		
a)	State and prove central limit theorem	4	U	
b)	A random process given by $X(t) = A \cos (w_0 t + \theta)$, where A and w_0 are constants and θ is a random variable uniformly distributed over $(0, 2\pi)$. prove that $X(t)$ is stationary.	5	Ap	
c)	A raining process is considered as two states Markov Chain. if it rains, it is considered to be in state 0 and if it does not rain, it is considered to be in states 1 and transition probability matrix of a Markov chain is given by	6	Ap	
	$P = \begin{bmatrix} 0.6 & 0.4 \\ 0.2 & 0.8 \end{bmatrix}$ <p>Compute probability that it will rain on third day given that it rains today. Also compute probability that it will rain for three days. Assume initial probabilities of state 0 and 1 as 0.4 and 0.6.</p>			

Q.3	Solve any two questions out of three. (10 marks each)	20		
a)	A certain test for a particular cancer is known to be 95% accurate. A person submits to the test and the result is positive. Suppose that a person comes from a population of 1,00,000 where 2000 people suffer from that disease. Compute probability that the person under test has that particular cancer.	1	Ap	
b)	Determine mean, variance and moment Generating function of Poisson Distribution	2	U,Ap	
c)	The joint pdf of (X, Y) is given by $f(x,y) = x+y$; $0 < x < 1, 1 < y < 1$ Calculate conditional mean and variance of Y given $X = x$	4	Ap	
Q.4	Solve any two questions out of three. (10 marks each)	20		
a)	Random process is given by $X(t) = 10 \cos[100t+\theta]$ where θ is random variable with uniform probability distribution on the interval $[-\pi, \pi]$, show that it is a correlation ergodic process.	5	Ap	
b)	If X and Y are two independent random variables and if $Z = X/Y$ then compute the probability density function of Z .	3	Ap	
c)	The transition probability of a matrix of a Markov chain with three states 0,1,2 is given by $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ And initial distribution is $P(X_0=i) = 1/3, i=0,1,2$. Calculate i) $P[X_2=2]$, ii) $P[X_3=1, X_2=2, X_1=1, X_0=2]$	6	Ap	
