

3

K. J. Somaiya Institute of Technology, Sion, Mumbai-22
 (Autonomous College Affiliated to University of Mumbai)

Nov – Dec 2024-25

B. Tech. Program: **Electronics and Telecommunication Engg.** Scheme: **IL**

Carry On Regular Examination: LY Semester **VII**

Course Code: **EXC701** and Course Name: **Microwave Engineering**

Date of Exam: **23/06/25**

Duration: 2.5 Hours

Max. Marks: 60

Instructions:

- (1). All questions are compulsory.
- (2). Draw neat diagrams wherever applicable.
- (3). Assume suitable data, if necessary.

Q. No.	Question	Max. Marks	CO	BT level
Q 1	Solve any two questions out of three: (05 marks each)	10		
a)	List the name and range of Radar frequency bands according to IEEE standards. Summarize the advantages of microwaves over low frequency.	1	2	
b)	Compare Transferred Electron Devices (TED) and Avalanche Transit Time Devices (ATTD)	3	2	
c)	Explain microwave radar system.	6	2	
Q 2	Solve any two questions out of three: (05 marks each)	10		
a)	An air filled rectangular waveguide has following parameters, $a=4$ cm, $b=2$ cm. Solve for the cut-off frequency of TE_{10} & TM_{11} modes and show the dominant mode.	2	3	
b)	Explain the term frequency pulling and frequency pushing in case of magnetron? Why phase focusing is required in magnetron? What is back heating? How it can be controlled?	4	2	
c)	Summarize the microwave frequency measurement setup using microwave bench.	5	2	
Q.3	Solve any two questions out of three: (10 marks each)	20		
a)	Select the shortest distance from the load and the length of the stub connected in parallel to a $50\ \Omega$ lossless line to match $Z_L = (200+j100)\ \Omega$ using single short circuited stub. (use smith chart)	2	3	
b)	i. Describe the Ridley-Watkins-Hilsum theory and list the modes of the Gunn diodes. (3M) ii. Illustrate the structure and working of TRApped Plasma Avalanche Triggered Transit (TRAPATT) diode. (3M)	3	3	

Nov – Dec 2024-25

B. Tech. Program: **Electronics and Telecommunication Engg.** Scheme: **III**

Carry On Regular Examination: LY Semester **VII**

Course Code: **EXC701** and Course Name: **Microwave Engineering**

Date of Exam: **23/06/25**

Duration: 2.5 Hours

Max. Marks: 60

	iii. What is Faraday rotation in Ferrite? Explain working of the isolator using Faraday rotation. Construct the s-matrix of isolator. (4 M)			
c)	List the methods to measure microwave power. Explain power measurement using Bolometer using suitable diagrams.		5	1
Q.4	Solve any two questions out of three. (10 marks each)	20		
a)	<p>i. Explain the working principle of reflex Klystron with the help of Apple Gate diagrams. (5 M)</p> <p>ii. A reflex Klystron operates under the following conditions: (5 M) $V_0 = 600 \text{ V}$, $L = 1 \text{ mm}$, $R_{th} = 15 \text{ k}\Omega$, $e/m = 1.759 \times 10^{11}$, $f_r = 9 \text{ GHz}$, $X_{11} = 1.841$, $J_1(X) = 0.582$. The tube is oscillating at f_r at the peak of the $n=2$ mode. Assume that the transit time through the gap and beam leading can be neglected.</p> <p>a) Find the value of the repeller voltage V_r.</p> <p>b) Find the direct current necessary to give a microwave gap voltage of 200 V.</p>		4	3
b)	Derive the wave equation for a TE wave and obtain all field components in a rectangular waveguide.		3	3
c)	<p>i. Compare the CW and Pulsed radar. (3 M)</p> <p>ii. Define: Radar cross section, Radar range and Maximum unambiguous range. (3 M)</p> <p>iii. List the medical application of Microwaves and explain any one. (4 M)</p>		5	2
