

May-June 2025

B. Tech Program: Computer Engineering Scheme I/II/IIB/III: _III_

Regular: SY Semester: IV

Course Code: CEC402 and Course Name: Analysis of Algorithms

Duration: 02.5 Hours

Max. Marks: 60

Date of Exam: 21/05/2025

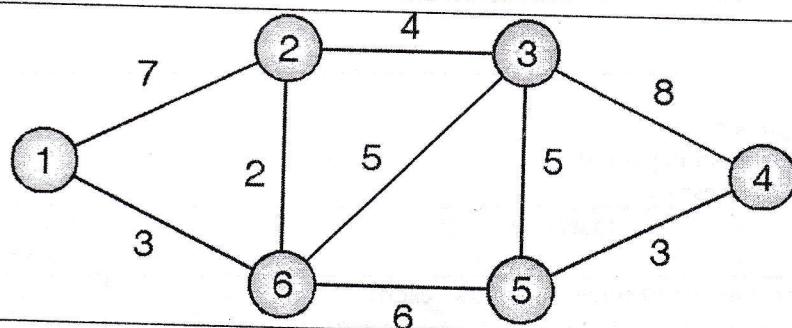
Instructions:

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

Q. No.	Question	Max. Marks	CO	BT level																										
Q 1	Solve any two questions out of three: (05 marks each)	10																												
a)	Solve the following recurrence relation using masters method i) $T(n) = 7T(n/2) + 18n^2$ ii) $T(n) = 9T(n/3) + 4n^6$		CO1	Ap																										
b)	Apply quick sort to sort the list {E,X,A,M,P,L,E} by using divide and conquer approach using pivot as first element		CO2	Ap																										
c)	Compare Minimum Cost Spanning Tree Prim's and Kruskal's Algorithm (05 Points)		CO3	U																										
Q 2	Solve any two questions out of three: (05 marks each)	10																												
a)	Write an algorithm for selection sort and derive its complexity		CO1	U																										
b)	Explain how backtracking approach is applied in graph coloring problem		CO5	U																										
c)	Determine how many valid hits the Rabin-Karp string matcher encounters in the text $T = "aaaaab"$ when looking for the pattern $P = "aab"$ with modulo $q=13$.		CO6	Ap																										
Q.3	Solve any two questions out of three. (10 marks each)	20																												
a)	Write an algorithm for Quicksort and analyze it with respect to the worst, best and average-case.		CO2	U																										
b)	Solve the following instance of assembly line scheduling using dynamic programming approach		CO4	Ap																										
Processing Time/Assembling Time		Transferring time																												
P_{ij} <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>1</td><td>7</td><td>9</td><td>3</td><td>4</td><td>8</td><td>4</td></tr> <tr><td>2</td><td>8</td><td>5</td><td>6</td><td>4</td><td>5</td><td>7</td></tr> </table>		1	7	9	3	4	8	4	2	8	5	6	4	5	7	t_{ij} <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>1</td><td>2</td><td>3</td><td>1</td><td>3</td><td>4</td></tr> <tr><td>2</td><td>2</td><td>1</td><td>2</td><td>2</td><td>1</td></tr> </table>			1	2	3	1	3	4	2	2	1	2	2	1
1	7	9	3	4	8	4																								
2	8	5	6	4	5	7																								
1	2	3	1	3	4																									
2	2	1	2	2	1																									
Entry Time		Exit Time																												
e_i <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>1</td><td>2</td></tr> <tr><td>2</td><td>4</td></tr> </table>		1	2	2	4	x_i <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>1</td><td>2</td></tr> <tr><td>3</td><td>2</td></tr> </table>			1	2	3	2																		
1	2																													
2	4																													
1	2																													
3	2																													
c)	Using Dijkstra's shortest path algorithm, determine shortest path from vertex 1 for the following graph.		CO3	Ap																										

May-June 2025

**B. Tech Program: Computer Engineering Scheme I/II/IIB/III: III
Regular: SY Semester: IV**

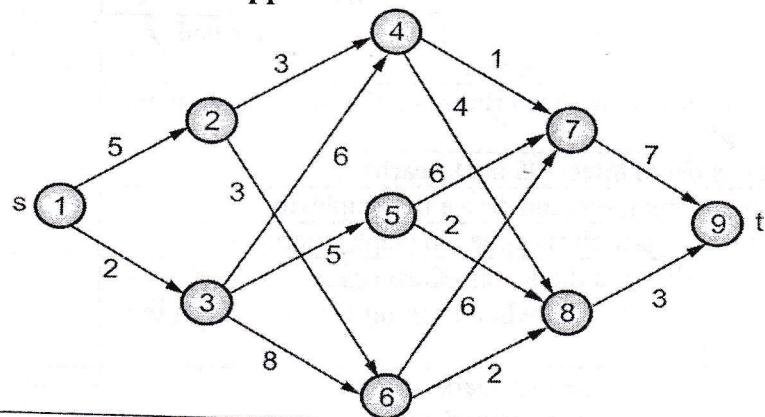

Regular: SY Semester: IV

Course Code: CEC402 and Course Name: Analysis of Algorithms

Date of Exam: 21/05/2025

Duration: 02.5 Hours

Max. Marks: 60


Q.4 Solve any **two** questions out of three. (10 marks each)

20

CO4

Ap

a) Find the minimum cost path from s to t in the following multistage graph using **forward approach**

b) (i) Explain Big-oh, Omega and Theta Notations with the help of Graph. (05M)
(ii) And represent the following function using above notations.

CO1 Ap

(ii) And represent the following function using above notations. (05M)

a. $T(n) = 3n + 2$

b. $T(n) = 10n^2 + 2n + 1$

c) Solve the following sum of subset problem using backtracking:
 $n = 7$, required sum = 15, weights = [2,3,5,6,7,8,9]

CO5 Ap

* * * * *