K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May-June 2025

Program: B.Tech. Scheme III - EXTC

Regular Examination: SY Semester: IV

Course Code: EXC401 and Course Name: Application of Mathematics in Engineering-II am: 19/05/2025 Duration: 02.30 Hours Max. Mark

Date of Exam: 19/05/2025

Max. Marks: 60

(1)A (2)D	ructions: all questions are coraw neat diagran assume suitable d	is wher	ever ap	plicable y.	·							
Q. No.	Question										СО	BT level
Q 1	Solve any two questions out of three: (05 marks each)											
a)	Determine the Karl Pearson's Coefficient of correlation between the number of hours studied (X) and the exam scores (Y) of 8 students.								r v	2	3	
	Study Hour	2	4	6	8	10	12	14	16			· • · , · ;
	Exam Score	50	55	65	70	75	80	85	90	a e		
											,	
b)	Convert the bas Schmidt proces	eg .	4	3								
c)	Prove that the e parabola.		6	3								
Q 2	Solve any two	10	- Nasara ara ara ara ara ara ara ara ara ar									
a)	Evaluate $\int_0^{1+2i} (2x^2 + iy) dz$, along the path $y = 2x$										1	3
b)	The Athletics federation of India estimates that the mean yearly value of a full athletic scholarship at in-state public universities is ₹19,000. Assume the scholarship value is normally distributed with a standard deviation of ₹2100. (i) For the 10% of athletic scholarships of least value, how much are they worth?							sume		3	3	
8 0 1								they				
	(ii) What percentage of athletic scholarships are valued at $\angle 22,000$ or more Note: $Area\ from\ z=0\ to\ z=1.43$ is 0.4236, Area from $z=0\ to\ z=0.4$ is 1.285, Area form $z=0\ to\ z=0.64$ is 0.7389, Area from $z=0\ to$								z = 0.4	- 1		
	z = 1.42 is 0.9222.								- 2			
c)	Obtain the linear transform of the quadratic form $2x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 - 4x_1x_3 - 4x_2x_3$ under the linear transformation $x_1 = y_1 - y_2 + 2y_3$, $x_2 = 2y_2 + 2y_3$, $x_3 = 3y_3$ and interpret your result										5	3
Q.3	Solve any two questions out of three. (10 marks each)									20		

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May-June 2025

Program: B. Tech. Scheme III — EXTC

Regular Examination: SY Semester: IV

Course Code: EXC401and Course Name: Application of Mathematics in Engineering-II

xam:19/05/2025 Duration: 02.30Hours Max. Marks Date of Exam: 19/05/2025 Max. Marks: 60

a)	(i) The regression lines of a sample are $2x + 5y = 20$, and $4x + 3y = 18$. Find Sample means \bar{x} and \bar{y} and coefficient of correlation between x and y .									. 4918	2	3
	(ii) Find the Rank correlation coefficient between employees' years of experience and their job performance scores from the data given below											
	Experience	5	8	6	7	3	9	2	4			
	Performance Score	78 ·	90	80	85	75	92	60	70			
b)	Consider the set $v = \{ y x, y \in R\}$. Define addition and scalar										4	3
	multiplication as $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$. Check whether $(V, \oplus$											
c)	Using the Rayleigh-Featremal of the function $y(0) = y(1) = 0$		6	3								
Q.4	Solve any two questions out of three. (10 marks each)											
a)	(i) Find the residue of the function $f(z) = \frac{z}{(z-1)^2(z^2-1)}$ at $z=1$.										1	3
B (6)	(ii) Expand the functi $z = 0$, Also name the											
b)	 (i) A call center receives an average of 5 customer calls per hour. Assuming the number of calls follows a Poisson distribution, find the probability that: (A) Exactly 3 calls are received in an hour. (B) At most 2 calls are received in an hour (ii) A continuous random variable has probability density function f(x) = 6(x - x²), 0 ≤ x ≤ 1 Find mean and Variance of the distribution. 									3	3	
c)	Reduce the following quadratic form $2x_1^2 + x_2^2 - 3x_3^2 - 8x_2x_3 - 4x_3x_1 + 12x_1x_2$ to normal form through congruent transformation. Also find its rank, signature and value class.										5	3
