

K. J. Somaiya Institute of Technology, Sion, Mumbai-22
(Autonomous College Affiliated to University of Mumbai)

July/Aug May-June 2025

Program: B. Tech Scheme III

Regular/Supplementary Examination: FY Semester: II

Course Code: BSC201 and Course Name: Engineering Mathematics - II

Date of Exam: 2 June 2025 29/07/25 Duration: 02.5 Hours Max. Marks: 60

Instructions:

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

Q. No.	Question	Max. Marks	CO	BT level
Q 1	Solve any two questions out of three: (05 marks each)	10		
a)	Evaluate $\int_0^a \int_0^{\sqrt{a^2-y^2}} y^2 \sqrt{x^2+y^2} dy dx$ by changing to polar coordinates.	5	5	3
b)	Solve $y(x^2y^2 + 2)dx + x(2 - 2x^2y^2)dy = 0$	5	1	3
c)	Solve $(D^3 - 3D^2 + 9D - 27)y = \cos 3x$	5	2	3
Q 2	Solve any two questions out of three: (05 marks each)	10		
a)	Evaluate $\int_0^1 \sqrt[3]{\log(1/x)} dx$	5	3	3
b)	Evaluate $\int_0^1 \int_0^{\sqrt{(1-y^2)/2}} \frac{dxdy}{\sqrt{1-x^2-y^2}}$	5	4	3
c)	Solve $\frac{dy}{dx} = x^3 + y$, $x = 0, y = 2$ by Runge-Kutta method of fourth order for $x = 0.2$	5	6	3
Q.3	Solve any two questions out of three. (10 marks each)	20		
a)	(i) Find by double integration the area between the circles $r = 2a \sin \theta, r = 2b \sin \theta$ ($b > a$) (ii) Evaluate $\int_0^{\log 2} \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$	6 4	5	3

K. J. Somaiya Institute of Technology, Sion, Mumbai-22
(Autonomous College Affiliated to University of Mumbai)

July/Aug May-June 2025

Program: B. Tech Scheme III

Regular/Supplementary Examination: FY Semester: II

Course Code: BSC201 and Course Name: Engineering Mathematics - II

Date of Exam: ~~2 June 2025~~ 29/07/25

Duration: 02.5 Hours

Max. Marks: 60

b)	(i) Solve $y^4 dx = (x^{-3/4} - y^3 x) dy$	6 4	1	3
	(ii) Solve $\frac{dy}{dx} + (2x \tan^{-1} y - x^3)(1 + y^2)$			
c)	Solve $(D^4 + 2D^2 + 1)y = x^2 \cos x$	10	2	3
Q.4	Solve any two questions out of three. (10 marks each)	20		
a)	(i) Show that $\int_0^\pi \frac{\log(1+acosx)}{\cos x} dx = \pi \sin^{-1} a$, $0 \leq a \leq 1$. Hence, evaluate $\int_0^\pi \frac{\log(1+\cos x)}{\cos x} dx$	6 4	3	3
	(ii) Evaluate $\int_0^2 y^4 (8 - y^3)^{-1/3} dy$			
b)	(i) Evaluate $\iint (x + 2y) dA$ over the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$ (ii) Change the order of integration and evaluate the integral $\int_0^2 \int_0^{4-x^2} \frac{xe^{2y}}{4-y} dy dx$	6 4 4	4	3
c)	Compute the values of $\int_{0.2}^{1.4} (\sin x - \log_e x + e^x) dx$ by using (i) Simpson's (1/3)rd rule, and (ii) Simpson's (3/8)th rule	10	6	3
