

July - August 2025

May-June 2025

(B. Tech.) Program: Computer Engineering Scheme IIB

Supplementary Regular Examination: TY Semester: VI

05/08/25

Course Code: CEC604 and Course Name: Artificial Intelligence

Date of Exam: 05/08/25

Duration: 02.5 Hours

Max. Marks: 60

Instructions:

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

Q. No.	Question	Max. Marks	CO	BT level
Q 1	Solve any two questions out of three: (05 marks each)	10		
a)	What do you mean by rationality? Also explain the factors affecting rationality.		CO1	U
b)	Identify PEAS descriptor for Online shopping recommendation agent.		CO2	AP
c)	How AI is useful in daily life? Associate it to real life by giving 5 suitable examples related to healthcare/ retail/banking.		CO6	U
Q 2	Solve any two questions out of three: (05 marks each)	10		
a)	Describe components of AI program.		CO1	U
b)	Formulate a problem for Travelling Salesman Problem.		CO2	AP
c)	Briefly explain disadvantages of Hill Climbing algorithm.		CO3	U
Q.3	Solve any two questions out of three. (10 marks each)	20		
a)	<p>Apply the alpha beta pruning on following example by considering</p>		CO3	AP

July - August 2025

May-June 2025

(B. Tech.) Program: Computer Engineering Scheme IIB

Supplementary Regular Examination: TY Semester: VI

Course Code: CEC604 and Course Name: Artificial Intelligence

Date of Exam: 05/08/25

Duration: 02.5 Hours

Max. Marks: 60

	root node as MAX.																			
b)	Convert the following sentences into FOL. 1. Students like AI. 2. Students studies everything they like. 3. Gargi is a student. Prove by resolution " Gargi studies AI" Also Explain any 2 knowledge representation techniques in AI.		CO4	AP																
c)	Explain Partial order planning with example along with planning graph.		CO5	U																
Q.4	Solve any two questions out of three. (10 marks each)	20																		
a)	<p>Find the optimal path along with cost for the following graph using A* algorithm. A is start state and G is Goal state.</p> <table border="1"> <thead> <tr> <th>State</th> <th>$h(n)$</th> </tr> </thead> <tbody> <tr> <td>A</td> <td>5</td> </tr> <tr> <td>B</td> <td>6</td> </tr> <tr> <td>C</td> <td>4</td> </tr> <tr> <td>D</td> <td>3</td> </tr> <tr> <td>E</td> <td>3</td> </tr> <tr> <td>F</td> <td>1</td> </tr> <tr> <td>G</td> <td>0</td> </tr> </tbody> </table>	State	$h(n)$	A	5	B	6	C	4	D	3	E	3	F	1	G	0		CO3	AP
State	$h(n)$																			
A	5																			
B	6																			
C	4																			
D	3																			
E	3																			
F	1																			
G	0																			
b)	Explain forward chaining and backward chaining in detail.		CO4	U																
c)	Illustrate Reinforcement learning with types of learning.		CO5	U																
