

July-Aug 2025

May-June 2025

(B.Tech.) Program: DS/AIML Scheme :IIB

Examination: LY- Honours Semester: VIII

Course Code: HDSC801

Course Name: Text, Web and Social Media Analytics

Date of Exam: 28/05/25

Duration: 2.5 Hours

25/07/25

60

Max. Marks:

Supplementary

Instructions:

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

Q. No.	Question	Max. Marks	CO	BT level
Q 1	Solve any two questions out of three: (05 marks each)	10		
a)	Give a detailed explanation of the N-Gram model using an example. Additionally, describe its applications and limitations in NLP.		CO1	U
b)	Discuss LDA probabilistic modeling algorithm in detail.		CO2	U
c)	Explain ' Inverted Index ' of a document collection using an example.		CO3	U
Q 2	Solve any two questions out of three: (05 marks each)	10		
a)	Explain with examples ' Node Neighborhood-Based Methods ' in detail		CO4	U
b)	Use any of the learning strategies for classification of sentiments present in the document.		CO5	Ap
c)	Explain discovery and analysis of ' Web Usage Patterns '.		CO3	U
Q.3	Solve any two questions out of three. (10 marks each)	20		
a)	Discuss in detail on ' Unsupervised Information Extraction ' and ' Kernel ' methods for relation extraction.		CO1	U
b)	Discuss in detail about ' Opinion Lexicon Expansion '.		CO5	U
c)	With the example of modeling navigational trails, describe the analysis of sequential and navigational patterns in detail for web usage mining.		CO3	U
Q.4	Solve any two questions out of three. (10 marks each)	20		
a)	Apply the item-based collaborative filtering on following data (User-Item Rating Matrix), calculate the User U1's rating for Item E .		CO4	Ap

July - Aug 2025

May June 2025

(B.Tech.) Program: DS/AIML Scheme : **IIB**

Examination: LY- Honours Semester: **VIII**

Course Name: **Text, Web and Social Media Analytics**

Max. Marks:

Supplementary

Course Code: **HDSC801**

Date of Exam: ~~28/05/25~~
~~25/07/2025~~

Duration: 2.5 Hours

60

	User	Item A	Item B	Item C	Item D	Item E		
	U1	5	3	4	4	?		
	U2	3	1	2	3	5		
	U3	4	3	4	3	4		
	U4	3	3	1	5	1		
	U5	1	5	5	2			

b)	<p>I) Discuss the 'Latent Dirichlet Allocation' topic model in detail. [5]</p> <p>II) A sample of 1000 patients from a healthcare database with two binary indicators: Hypertension (H): Yes or No & Smoker (S): Yes or No</p> <p>A breakdown of the data is :</p> <table> <thead> <tr> <th></th><th>Smoker(Yes)</th><th>Smoker(No)</th><th>Total</th></tr> </thead> <tbody> <tr> <td>Hypertension (Yes)</td><td>180</td><td>220</td><td>400</td></tr> <tr> <td>Hypertension (No)</td><td>120</td><td>480</td><td>600</td></tr> <tr> <td>Total</td><td>300</td><td>700</td><td>1000</td></tr> </tbody> </table> <p>i) Find the probability that a patient has hypertension and is a smoker. ii) Probability that a patient has hypertension. iii) Probability that a patient is a smoker. iv) Calculate the percentage(%) of smokers who have hypertension</p>		Smoker(Yes)	Smoker(No)	Total	Hypertension (Yes)	180	220	400	Hypertension (No)	120	480	600	Total	300	700	1000	CO2	Ap
	Smoker(Yes)	Smoker(No)	Total																
Hypertension (Yes)	180	220	400																
Hypertension (No)	120	480	600																
Total	300	700	1000																
c)	<p>Explain Index Compression in detail. Apply the Golomb Encoding compression technique on following given numbers and create their coding forms separately.</p> <p>i) Encode a number (n)= 12 with base = 4 ii) Encode a number (n)= 23 with base = 7 iii) Encode a number (n)= 03 with base = 5</p>	CO3	Ap																
