

K. J. Somaiya Institute of Technology, Sion, Mumbai-22
(Autonomous College Affiliated to University of Mumbai)

JUN

May-June 2025

Program: B.Tech. Scheme III

Supplementary Regular Examination: SY Semester: IV

Course Code: EXC401 and Course Name: Application of Mathematics in Engineering-II

Date of Exam: ~~2025/07/25~~ 28/07/25

Duration: 02.5 Hours

Max. Marks: 60

Instructions:

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

Q. No.	Question	Max. Marks	CO	BT level														
Q 1	<p>Solve any two questions out of three: (05 marks each)</p> <p>a) Calculate the value of Spearman's rank correlation coefficient for the following data</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>X</td><td>10</td><td>12</td><td>18</td><td>18</td><td>15</td><td>40</td></tr> <tr> <td>Y</td><td>12</td><td>18</td><td>25</td><td>25</td><td>50</td><td>25</td></tr> </table>	X	10	12	18	18	15	40	Y	12	18	25	25	50	25	10		
X	10	12	18	18	15	40												
Y	12	18	25	25	50	25												
b)	Verify Cauchy-Schwartz inequality for $u = (2, -1, 1)$ & $v = (1, 1, 2)$. Also find angle between u and v .	5	4	3														
c)	Find the extremal of $\int_{x_1}^{x_2} (y'^2 - y^2 + 2xy) dx$	5	6	3														
Q 2	<p>Solve any two questions out of three: (05 marks each)</p> <p>a) Evaluate using Cauchy residue theorem $\oint_C \frac{z^2+3}{(z-1)(z+1)} dz$.</p> <p>b) If X is continuous random variable with probability density function $f(x) = \begin{cases} k(x - x^3) & 0 \leq X \leq 1 \\ 0 & \text{otherwise} \end{cases}$ Find I) k II) Mean III) Variance</p> <p>c) Reduce the matrix of quadratic form $6x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 + 4x_1x_3 - 2x_2x_3$ to the diagonal form using congruent transformation and interpret in terms of quadratic form.</p>	10																

K. J. Somaiya Institute of Technology, Sion, Mumbai-22
(Autonomous College Affiliated to University of Mumbai)

July

May-June 2025

Program: B.Tech. Scheme III

Regular Examination: SY Semester: IV

Course Code: EXC401 and Course Name: Application of Mathematics in Engineering-II

Date of Exam: ~~19/05/2025~~ 28/07/25

Duration: 02.5 Hours

Max. Marks: 60

Q.3	<p>Solve any two questions out of three. (10 marks each)</p>	20																		
a)	<p>I) For the following data ,</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>X</td><td>36</td><td>32</td><td>34</td><td>31</td><td>32</td><td>32</td><td>35</td></tr> <tr> <td>Y</td><td>35</td><td>33</td><td>31</td><td>30</td><td>34</td><td>32</td><td>36</td></tr> </table> <p>Find the regression line of y on x and hence find regression coefficient b_{yx}.</p> <p>II) The regression lines of sample are</p> $x + 6y = 6 \text{ & } 3x + 2y = 10.$ <p>Find i.sample means \bar{X} & \bar{Y}</p> <p>ii.coefficient of correlation between x & y</p> <p>iii.y when $x = 12$</p>	X	36	32	34	31	32	32	35	Y	35	33	31	30	34	32	36	6	2	3
X	36	32	34	31	32	32	35													
Y	35	33	31	30	34	32	36													
b)	<p>I)Find an orthonormal basis of \mathbb{R}^3 by applying Gram-Schmidt orthogonalisation to $\{(1,1,1), (-1,1,0), (1,2,1)\}$</p> <p>II) Show that $W = \{(x, y) \in \mathbb{R}^2 / x = 3y\}$ is subspace of \mathbb{R}^2</p>	7	4	3																
c)	<p>I) Find the curve $y = f(x)$ for which extremal of $\int_{x_1}^{x_2} y'^2 dx$ subject to the condition $\int_{x_1}^{x_2} y dx = k$.</p> <p>II) Find extremal of $\int_{x_1}^{x_2} \frac{y'^2}{x^2} dx$</p>	7	6	3																
Q.4	Solve any two questions out of three. (10 marks each)	20																		
a)	<p>I) Find Laurent's series expansions of the function $f(z) = \frac{1}{z(z+1)(z-2)}$ within i) $0 < z < 1$ ii) $1 < z < 2$ iii) $z > 2$</p> <p>II) Evaluate $\int_0^{1+i} (x^2 + 2xyi - y^2) dz$ along the line $y = x$.</p>	7	1	3																
		3																		

K. J. Somaiya Institute of Technology, Sion, Mumbai-22
(Autonomous College Affiliated to University of Mumbai)

July

May-June 2025

Program: B.Tech. Scheme III

~~Supplementary~~ Regular Examination: SY Semester: IV

Course Code: EXC401 and Course Name: Application of Mathematics in Engineering-II

Date of Exam: 10/05/2025 28/07/25

Duration: 02.5 Hours

Max. Marks: 60

b)	<p>I) A discrete random variable X has the following probability distribution</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td style="text-align: center;">X</td><td style="text-align: center;">1</td><td style="text-align: center;">2</td><td style="text-align: center;">3</td><td style="text-align: center;">4</td><td style="text-align: center;">5</td><td style="text-align: center;">6</td><td style="text-align: center;">7</td></tr> <tr> <td style="text-align: center;">$P(X = x)$</td><td style="text-align: center;">k</td><td style="text-align: center;">$2k$</td><td style="text-align: center;">$3k$</td><td style="text-align: center;">k^2</td><td style="text-align: center;">k^2+k</td><td style="text-align: center;">$2k^2$</td><td style="text-align: center;">$4k^2$</td></tr> </table> <p>Find I) k II) $P(X < 5)$ III) $P\left(\frac{1 < X \leq 3}{2 \leq X \leq 5}\right)$</p> <p>II) The number of accidents in a year attributed to taxi drivers in a city follows Poisson's distribution with mean 3. Out of 1000 taxi drivers, find approximately the number of drivers with no accident in a year and more than 3 accidents in a year. (Given: $e^{-1} = 0.3679, e^{-2} = 0.1353, e^{-3} = 0.0498$)</p>	X	1	2	3	4	5	6	7	$P(X = x)$	k	$2k$	$3k$	k^2	k^2+k	$2k^2$	$4k^2$	4	3	3
X	1	2	3	4	5	6	7													
$P(X = x)$	k	$2k$	$3k$	k^2	k^2+k	$2k^2$	$4k^2$													
c)	<p>I) Find singular value decomposition of $A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$</p> <p>II) Obtain the transform of the quadratic form</p> $x_1^2 + 2x_2^2 - 7x_3^2 - 4x_1x_2 + 8x_1x_3$ <p>under the linear transformation</p> $x_1 = y_1 + 2y_2 + 4y_3$ $x_2 = y_2 + 4y_3$ $x_3 = y_3$	7	5	3																
