

130

K. J. Somaiya Institute of Technology, Sion, Mumbai-22
(Autonomous College Affiliated to University of Mumbai)

Nov – Dec 2025

(B. Tech / M. Tech.) Program: B.Tech Scheme I/II/IIB/III:III

Regular Examination: TY Semester: V

Course Code: AIC 501 and Course Name: Machine Learning

Date of Exam: 24/11/25

Duration: 02.5 Hours

Max. Marks: 60

Instructions:

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

Q. No.	Question	Marks	CO	BT level																				
Q 1	Solve any two questions out of three: (05 marks each)	10																						
a)	Explain the concept of cross-validation and its importance in model evaluation.		CO1	Un																				
b)	What is the role of Entropy and Information Gain in decision trees?		CO3	Un																				
c)	Explain the Downhill Simplex (Nelder–Mead) method.		CO2	Un																				
Q 2	Solve any two questions out of three: (05 marks each)	10																						
a)	Explain ROC and AUC curves in ML with examples.		CO4	Un																				
b)	Define clustering in Machine Learning. Explain how the number of clusters (k) affects the K-Means results.		CO5	Un																				
c)	Differentiate between Supervised and Unsupervised Learning.		CO1	Un																				
Q.3	Solve any two questions out of three. (10 marks each)	20																						
a)	A hospital now wants to include Age as an additional predictor alongside BMI to determine the likelihood of Diabetes ($Y = 1$). The updated dataset for 4 patients is:		CO2	Ap																				
	<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Data Field</th><th style="text-align: center;">Observation 1</th><th style="text-align: center;">Observation 2</th><th style="text-align: center;">Observation 3</th><th style="text-align: center;">Observation 4</th></tr> </thead> <tbody> <tr> <td style="text-align: center;">BMI (X1)</td><td style="text-align: center;">22</td><td style="text-align: center;">25</td><td style="text-align: center;">28</td><td style="text-align: center;">32</td></tr> <tr> <td style="text-align: center;">Age (X2)</td><td style="text-align: center;">45</td><td style="text-align: center;">50</td><td style="text-align: center;">35</td><td style="text-align: center;">40</td></tr> <tr> <td style="text-align: center;">Diabetes (0/1)</td><td style="text-align: center;">0</td><td style="text-align: center;">0</td><td style="text-align: center;">1</td><td style="text-align: center;">1</td></tr> </tbody> </table>	Data Field	Observation 1	Observation 2	Observation 3	Observation 4	BMI (X1)	22	25	28	32	Age (X2)	45	50	35	40	Diabetes (0/1)	0	0	1	1			
Data Field	Observation 1	Observation 2	Observation 3	Observation 4																				
BMI (X1)	22	25	28	32																				
Age (X2)	45	50	35	40																				
Diabetes (0/1)	0	0	1	1																				
	<p>Assume:</p> <ul style="list-style-type: none"> ● Initial parameters: $\theta_0 = 0$, $\theta_1 = 0$, $\theta_2 = 0$ ● Learning rate: $\alpha = 0.1$ ● Use logistic regression and gradient descent <p>Calculate the updated values of θ_0, θ_1, and θ_2 after 2 iteration of gradient descent.</p>																							

b)	<p>An engineer is testing the relationship between the time a polymer is allowed to cure and its final tensile strength. The data for Curing Time (in hours) and Tensile Strength (in Pascals) are shown below:</p> <table border="1" data-bbox="182 291 952 482"> <thead> <tr> <th>Data Field</th><th>1</th><th>2</th><th>3</th><th>4</th><th>5</th><th>6</th></tr> </thead> <tbody> <tr> <td>Curing Time (x in hours)</td><td>1</td><td>1.5</td><td>2</td><td>2.5</td><td>3</td><td>3.5</td></tr> <tr> <td>Tensile Strength (y in Pa)</td><td>450</td><td>510</td><td>580</td><td>630</td><td>695</td><td>740</td></tr> </tbody> </table> <p>1. Find the least squares regression line, $y = ax + b$, that models the relationship between Curing Time (x) and Tensile Strength (y). 2. Use the resulting least squares regression line as a predictive model to estimate the Tensile Strength of the polymer if the Curing Time were extended to 5.0 hours.</p>	Data Field	1	2	3	4	5	6	Curing Time (x in hours)	1	1.5	2	2.5	3	3.5	Tensile Strength (y in Pa)	450	510	580	630	695	740			CO2	Ap																																		
Data Field	1	2	3	4	5	6																																																						
Curing Time (x in hours)	1	1.5	2	2.5	3	3.5																																																						
Tensile Strength (y in Pa)	450	510	580	630	695	740																																																						
c)	<table border="1" data-bbox="182 695 1238 999"> <thead> <tr> <th>Data Field</th><th>1</th><th>2</th><th>3</th><th>4</th><th>5</th><th>6</th><th>7</th><th>8</th><th>9</th><th>10</th></tr> </thead> <tbody> <tr> <td>b1 (Budget)</td><td>High</td><td>High</td><td>Low</td><td>Low</td><td>Medium</td><td>Medium</td><td>High</td><td>Medium</td><td>Low</td><td>High</td></tr> <tr> <td>b2 (Companion)</td><td>Family</td><td>Friends</td><td>Family</td><td>Solo</td><td>Friends</td><td>Family</td><td>Solo</td><td>Friends</td><td>Friends</td><td>Family</td></tr> <tr> <td>b3 (Temp)</td><td>Warm</td><td>Warm</td><td>Cold</td><td>Cold</td><td>Warm</td><td>Cold</td><td>Warm</td><td>Cold</td><td>Warm</td><td>Cold</td></tr> <tr> <td>Booked or not</td><td>Yes</td><td>Yes</td><td>No</td><td>No</td><td>Yes</td><td>No</td><td>Yes</td><td>No</td><td>No</td><td>No</td></tr> </tbody> </table> <p>Build the decision tree for the above dataset using the C4.5 method.</p>	Data Field	1	2	3	4	5	6	7	8	9	10	b1 (Budget)	High	High	Low	Low	Medium	Medium	High	Medium	Low	High	b2 (Companion)	Family	Friends	Family	Solo	Friends	Family	Solo	Friends	Friends	Family	b3 (Temp)	Warm	Warm	Cold	Cold	Warm	Cold	Warm	Cold	Warm	Cold	Booked or not	Yes	Yes	No	No	Yes	No	Yes	No	No	No			CO3	Ap
Data Field	1	2	3	4	5	6	7	8	9	10																																																		
b1 (Budget)	High	High	Low	Low	Medium	Medium	High	Medium	Low	High																																																		
b2 (Companion)	Family	Friends	Family	Solo	Friends	Family	Solo	Friends	Friends	Family																																																		
b3 (Temp)	Warm	Warm	Cold	Cold	Warm	Cold	Warm	Cold	Warm	Cold																																																		
Booked or not	Yes	Yes	No	No	Yes	No	Yes	No	No	No																																																		
Q.4	Solve any two questions out of three. (10 marks each)	20																																																										
a)	<p>Consider the following set of data points given, find the optimal hyperplane for these data points, $(1,0.5), (1,1), (1, -0.5), (-0.5, 0.5), (0.5,0.5), (2,0), (4,0), (4.5, 1), (4.5, 0.5), (5, -1), (5.5, 0)$</p>			CO4	Ap																																																							
b)	<p>Given the dataset $\{ a, b, c, d, e \}$ and the following distance matrix. Construct a dendrogram by complete-linkage hierarchical clustering using the agglomerative method.</p> $D = \begin{pmatrix} & a & b & c & d & e \\ a & 0 & 9 & 3 & 6 & 11 \\ b & 9 & 0 & 7 & 5 & 10 \\ c & 3 & 7 & 0 & 9 & 2 \\ d & 6 & 5 & 9 & 0 & 8 \\ e & 11 & 10 & 2 & 8 & 0 \end{pmatrix}$			CO5	Ap																																																							
c)	<p>Using the principal components, project the original data points onto the new subspace (i.e., calculate the scores for PC1 and PC2).</p> <table border="1" data-bbox="182 1751 1222 1908"> <thead> <tr> <th>Data Field</th><th>1</th><th>2</th><th>3</th><th>4</th><th>5</th><th>6</th><th>7</th><th>8</th><th>9</th><th>10</th></tr> </thead> <tbody> <tr> <td>x1</td><td>1.4</td><td>1.6</td><td>-1.4</td><td>-2</td><td>-3</td><td>2.4</td><td>1.5</td><td>2.3</td><td>-3.2</td><td>-4.1</td></tr> <tr> <td>x2</td><td>1.65</td><td>1.975</td><td>-1.775</td><td>-2.525</td><td>-3.95</td><td>3.075</td><td>2.025</td><td>2.75</td><td>-4.05</td><td>-4.85</td></tr> </tbody> </table>	Data Field	1	2	3	4	5	6	7	8	9	10	x1	1.4	1.6	-1.4	-2	-3	2.4	1.5	2.3	-3.2	-4.1	x2	1.65	1.975	-1.775	-2.525	-3.95	3.075	2.025	2.75	-4.05	-4.85			CO6	Ap																						
Data Field	1	2	3	4	5	6	7	8	9	10																																																		
x1	1.4	1.6	-1.4	-2	-3	2.4	1.5	2.3	-3.2	-4.1																																																		
x2	1.65	1.975	-1.775	-2.525	-3.95	3.075	2.025	2.75	-4.05	-4.85																																																		
