

May – June 2025

PhD Program: Academic Year 2024-25

Course Work Examination

Course Code: **PhD102** and Course Name: **AI: Constraint Satisfaction**

Date: 21-05-2025

Duration: 2.00 PM to 4.30 PM

Max. Marks: 70

Instructions:

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

	Question	Max. Marks	CO	BT Level
Qu-1	Solve any Six questions out of Eight.	30		
i)	What is a Constraint Satisfaction Problem (CSP)? Derive Components of Constraint Satisfaction Problems for Map Colouring.	5	CO1	2
ii)	Figure shows the constraint graph and the matching diagram of a map colouring problem. Express the problem as a CSP. After the CSP is made arc-consistent what values will remain in the domain of C?	5	CO3	3
	<p>The constraint graph consists of four nodes: C, D, E, and a blank circle. Node C has a domain of {b, r}. Node D has a domain of {b, r}. Node E has a domain of {b, g, r}. There are three constraints: C is connected to D and E, and D is connected to E. The matching diagram shows a circle with four regions labeled b, r, g, and r. Arcs connect the regions: b to r, r to b, r to g, and g to r.</p>			
iii)	Explain Gaschnig's Backjumping with an example.	5	CO4	2
iv)	Create a model-based diagnosis for a car that won't start. Identify components, correct behavior, observed behavior, and conflicts. Derive the faulty part.	5	CO5	3
v)	Prepare a model for the n-queen problem. List what variables are needed for the problem, Give their domains.	5	CO1	3
vi)	Use a constraint satisfaction formulation to solve a planning problem: Making a sandwich (Get bread, apply butter, add filling, etc.). What are the variables and constraints?	5	CO6	3

vii)	Take a graph-coloring problem with 6 nodes and simulate Least Constraining Value (LCV) ordering for domain values. Explain your choice at each step	5	CO5	3
viii)	<p>The following is a cryptarithmetic puzzle, an addition problem, where each alphabet/variable denotes a unique digit (0 to 9), so no two variables are assigned the same digit, and a sequence of alphabets denotes a number whose highest significant digit is non-zero.</p> <p style="text-align: center;"> $\begin{array}{r} \text{M A Y} \\ + \text{J U N E} \\ \hline \text{J U L Y} \end{array}$ </p> <p>----- A solution to the puzzle is a set of value assignments to variables that satisfy the addition problem. Model this problem as a CSP.</p>	5	CO3	3
Qu-2	Solve any TWO questions out of THREE .	20		
i)	Describe what is Constraint Graph or Constraint Network. Design Constraint Network for crossword puzzle .	10	CO2	2
ii)	Explain Arc Consistency. Give the pseudo-code of AC-3 algorithm. Briefly explain the idea behind it .	10	CO3	3
iii)	What is CSP? Model a class scheduling problem as a CSP. Use MRV and Degree Heuristic to assign classrooms to lectures without clashes. Justify the heuristics used.	10	CO4	3
Qu-3	Solve any TWO questions out of THREE .	20		
i)	Consider a planning problem (robot moves from Room A \rightarrow B \rightarrow C) Translate the problem into a SAT formulation. Write the CNF encoding and solve it using a basic SAT solver or logic tool.	10	CO4	3
ii)	Consider the following constraint network $R = \langle \{x_1, x_2, x_3\}, \{D_1, D_2, D_3\}, \{C\} \rangle$ where $D_1 = D_2 = D_3 = \{a, b, c\}$ and $C = \langle \{x_1, x_2, x_3\}, \{a, a, b\}, \{a, b, b\}, \{b, a, c\}, \{b, b, b\} \rangle$. How many solutions exist? Give all solutions..	10	CO2	2
iii)	Combine Forward Checking (lookahead) with Conflict-Directed Backjumping (lookback) in a sample problem. What's the performance gain?	10	CO6	3
