

May – June 2025

PhD Program: Academic Year 2024-25

Course Work Examination

Course Code: **PhD102** and Course Name: **Introduction to Machine Learning**

Date: 21-05-2025

Duration: 2.00 PM to 4.30 PM

Max. Marks: 70

Instructions:

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

QN	Question	Max. Marks	CO	BT Level																					
Qu-1	Solve any Six questions out of Eight.	30																							
i)	<p>Consider the following dataset.</p> <table border="1"> <thead> <tr> <th>X1</th><th>X2</th><th>y</th></tr> </thead> <tbody> <tr><td>1.0</td><td>0.0</td><td>2.65</td></tr> <tr><td>-1.0</td><td>0.5</td><td>-2.05</td></tr> <tr><td>2.0</td><td>1.0</td><td>1.95</td></tr> <tr><td>-2.0</td><td>-1.5</td><td>0.90</td></tr> <tr><td>1.0</td><td>1.0</td><td>0.60</td></tr> <tr><td>-1.0</td><td>-1.0</td><td>1.45</td></tr> </tbody> </table> <p>Using the k-nearest neighbour (k-NN) regression model with k=3, predict the value of y at (x₁, x₂) = (1.0, 0.5). use the Euclidean distance to find the nearest neighbours.</p>	X1	X2	y	1.0	0.0	2.65	-1.0	0.5	-2.05	2.0	1.0	1.95	-2.0	-1.5	0.90	1.0	1.0	0.60	-1.0	-1.0	1.45	5	CO3	3
X1	X2	y																							
1.0	0.0	2.65																							
-1.0	0.5	-2.05																							
2.0	1.0	1.95																							
-2.0	-1.5	0.90																							
1.0	1.0	0.60																							
-1.0	-1.0	1.45																							
ii)	List activation functions used in neural networks. How do they impact network performance?	5	CO3	2																					
iii)	Differentiate Bias and Variance in Machine Learning	5	CO6	4																					
iv)	<p>Consider the following dataset.</p> <table border="1"> <thead> <tr> <th>X1</th><th>X2</th><th>y</th></tr> </thead> <tbody> <tr><td>1.0</td><td>0.0</td><td>2.65</td></tr> <tr><td>-1.0</td><td>0.5</td><td>-2.05</td></tr> <tr><td>2.0</td><td>1.0</td><td>1.95</td></tr> <tr><td>-2.0</td><td>-1.5</td><td>0.90</td></tr> <tr><td>1.0</td><td>1.0</td><td>0.60</td></tr> <tr><td>-1.0</td><td>-1.0</td><td>1.45</td></tr> </tbody> </table> <p>Fit a linear regression model of the $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ using the mean-squared error loss. Using this model predict the value of y at the point (x₁, x₂) = (0.5, -1.0).</p>	X1	X2	y	1.0	0.0	2.65	-1.0	0.5	-2.05	2.0	1.0	1.95	-2.0	-1.5	0.90	1.0	1.0	0.60	-1.0	-1.0	1.45	5	CO1	3
X1	X2	y																							
1.0	0.0	2.65																							
-1.0	0.5	-2.05																							
2.0	1.0	1.95																							
-2.0	-1.5	0.90																							
1.0	1.0	0.60																							
-1.0	-1.0	1.45																							
v)	Define the curse of dimensionality and compare feature selection with feature extraction.	5	CO2	4																					

vi)	Explain Boosting and Bagging Ensemble techniques.	5	CO5	2
vii)	What are the distinguishing characteristics between reinforcement learning and supervised learning methodologies?	5	CO4	4
viii)	For a dataset with n points in d dimensions, what is the maximum number of support vectors possible in a hard-margin SVM? Explain	5	CO2	2
Qu-2	Solve any TWO questions out of THREE .	20		
i)	a) Explain in details expectation maximization algorithm. b) Illustrate characteristics of Decision tree with example.	10	CO6 CO4	2
ii)	How can we determine the optimal number of clusters (K) for the k-means algorithm? Additionally, perform k-means clustering on: {2, 3, 4, 10, 11, 12, 20, 25, 30}, for K=2.	10	CO5	3
iii)	Explain the architecture of a perceptron and working process with its types.	10	CO2	3
Qu-3	Solve any TWO questions out of THREE .	20		
i)	Describe linear regression in machine learning, including its various types and the evaluation metrics commonly used for assessing performance.	10	CO1	2
ii)	Why dimensionality reduction is an important issue. Describe dimension reduction techniques in ML.	10	CO3	2
iii)	Apply Agglomerative clustering algorithm on given data (table-1) and draw dendrogram. Show three clusters with its allocated point. Use the Single link method.	10	CO4	3

Table-1: Dataset for Agglomerative Algorithm.

Sample No	X	Y
S1	4	3
S2	1	4
S3	2	1
S4	3	8
S5	6	9
S6	5	1
