

May – June 2025

PhD Program: Academic Year 2024-25

Course Work Examination

Course Code: **PhD102** and Course Name: **Remote Sensing Essentials**

Date: 21-05-2025

Duration: 2.00 PM to 4.30 PM

Max. Marks: 70

Instructions:

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

	Question	Max. Marks	CO	BT Level										
Qu-1	Solve any Six questions out of Eight .	30												
i)	Explain law of radiation and their relevance in remote sensing.	5	CO1	U										
ii)	Explain different techniques of image acquisition	5	CO2	U										
iii)	Explain basic image enhancement techniques	5	CO3	U										
iv)	What are the atmospheric and geometric corrections techniques in RS	5	CO4	U										
v)	What is band rationing?	5	CO5	U										
vi)	Explain about Multi-spectral scanners and imaging devices,	5	CO6	U										
vii)	Which are False Topographic Phenomena and correction techniques	5	CO4	U										
viii)	Explain active microwave remote sensing.	5	CO5	U										
Qu-2	Solve any TWO questions out of THREE .	20												
i)	Explain mosaicking, subsets, sub-sampling techniques and applications,	10	CO1	U										
ii)	Explain all spatial filtering techniques	10	CO5	U										
iii)	Explain supervised image classification techniques with examples.	10	CO3	U										
Qu-3	Solve any TWO questions out of THREE .	20												
i)	You are given the reflectance values of a pixel in 4 spectral bands (B1 to B4) as follows:	10	CO6	Ap										
	<table border="1"> <thead> <tr> <th>Band</th> <th>Reflectance</th> </tr> </thead> <tbody> <tr> <td>B1</td> <td>0.30</td> </tr> <tr> <td>B2</td> <td>0.45</td> </tr> <tr> <td>B3</td> <td>0.60</td> </tr> <tr> <td>B4</td> <td>0.15</td> </tr> </tbody> </table>	Band	Reflectance	B1	0.30	B2	0.45	B3	0.60	B4	0.15			
Band	Reflectance													
B1	0.30													
B2	0.45													
B3	0.60													
B4	0.15													

	<p>(a) Perform the following band ratios:</p> <ul style="list-style-type: none"> Ratio1 = B3 / B2 Ratio2 = B1 / B4 <p>(b) Consider the following covariance matrix (in simplified form) for the 4 bands:</p> $\text{Cov} = \begin{bmatrix} 0.0225 & 0.0180 & 0.0270 & 0.0090 \\ 0.0180 & 0.0324 & 0.0405 & 0.0135 \\ 0.0270 & 0.0405 & 0.0625 & 0.0200 \\ 0.0090 & 0.0135 & 0.0200 & 0.0100 \end{bmatrix}$ <p>Using PCA, determine:</p> <ol style="list-style-type: none"> The principal component with the highest variance (you may approximate by observing diagonal values). Suggest which band contributes the most to that component based on covariance values. 			
ii)	Explain all Image Compression techniques and different image file formats.	10	CO2	U
iii)	Give applications of Remote Sensing in Earthquake Studies	10	CO4	U
