K.J. SOMAIYA INSTITUTE OF MANAGEMENT STUDIES & RESEARCH

PGDM (COMM) - III 2017 - 19 BATCH

Marketing Research

(End Term Exam)

Total Marks : 50

Time : 3 Hours

Date: 28/03/2018

Attempt any 4 Question (Each carries 12.5 Marks)

Q1. The company is producing herbal tooth powder which is widely accepted in rural Punjab. It wants to enter the urban market. The company decided to get a research study conducted with the following objectives:

- To estimate the proportion of population that used tooth powder.
- To understand the demographic and psychographic profile of people who used tooth powder.
- To understand the reasons for not using tooth powder.
- To get an understanding of the media habits of both the users and non-users of tooth powder.

Design a Questionnaire to conduct this research.

Q2. The Marketing Manager of Reynolds wants to know how the customer values the various tangible and intangible features offered by its micro-tip pen. He identifies the attributes of his product which are important to customers, then the level for each attribute that the company is willing to design and offer to a customer. These are the following attributes of a micro-tip pen, which are considered to be important.

- 1. Price of the cicro-tip pen
- 2. Color of the ink in refill
- 3. Diameter of the tip of the refill.

The levels of these attributes are:

- 1. Price Rs 5, Rs 7, and Rs 10
- 2. Color of ink Blue, Black and Red
- 3. Diameter of tip- 0.25mm, 0.45 mm, and 0.5 mm

Dunning variable were used for running the regression						
Price of the Pen	var 1	var2				
Р5	1	0				
P7	0	1				
P10	-1	-1				
Color of the INK	var 3	var4				
Blue	1	0				
Black	0	1				
Red	-1	-1				
Diameter of the tip	var 5	var6				
DO-25	1	0				
DO-45	0	1				
DO-50	-1	-1				

Dummy variable were used for running the regression for the above

The conjoint analysis is run with regression model. The following is the output

Model Summary								
Model	R R Square Adjusted R Std. Error o							
			Square	Estimate				
1	.867ª	.751	.677	4.51179				

a. Predictors: (Constant), VAR00006, VAR00004, VAR00002,

VAR00005, VAR00003, VAR00001

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	1230.875	6	205.146	10.078	.000 ^b
1	Residual	407.125	20	20.356		
	Total	1638.000	26			

a. Dependent Variable: VAR00007

b. Predictors: (Constant), VAR00006, VAR00004, VAR00002, VAR00005, VAR00003,

VAR00001

Model		Unstandardize	ed Coefficients	Standardized	t	Sig.	
				Coefficients			
		В	Std. Error	Beta			
	(Constant)	14.321	.872		16.422	.000	
	VAR00001	2.012	1.231	.211	1.635	.118	
	VAR00002	1.457	1.231	.153	1.184	.250	
1	VAR00003	-4.099	1.231	430	-3.331	.003	
	VAR00004	.568	1.231	.060	.462	.649	
	VAR00005	-6.210	1.231	632	-5.046	.000	
	VAR00006	-1.227	1.215	128	-1.010	.324	

Coefficients^a

a. Dependent Variable: VAR00007

Find out the Part Utility and Range Utility of the attributes. What inference can you derive form it.

Q3. B-segment cars form the largest part of the consumer vehicle market in India. Post liberalization in 1990s a large number of consumers have graduated from two-wheelers to cars, resulting in a boom in the B- segment car market. A study to understand what factors influence the purchase of B-segment cars in India. A survey was conducted on 75 respondents in which they were asked to rate 18 attributes in terms of their importance while purchasing a B-segment car.

The factor analysis was carried out on 18 variables using a sample size of 75 respondents. The following are the results.

Factor Analysis

Tuic	and Danieus rest	
Kaiser-Meyer-Olkin Adequacy.	.613	
Bartlett's Test of Sphericity	Approx. Chi-Square df	355.669 153

153

.000

df

Sig.

KMO and Bartlett's Test

Communalities

	Initial	Extraction
Price on Road	1.000	.743
Brand Name	1.000	.773
Engine Capacity	1.000	.650
Looks & Design	1.000	.763
Fuel Efficiency	1.000	.710
Discount Schme	1.000	.582
Resale Value	1.000	.671
After Sale Services	1.000	.554
Running and Maintaining Cost	1.000	.686
Convenience Features	1.000	.493
Purpose of Purchase	1.000	.697
Performance Information Available	1.000	.587
Driving Pleasure	1.000	.635
Car Image & Positioning	1.000	.579
Economical	1.000	.738
Colours Available	1.000	.595
Advertising & Marketing	1.000	.463
Safety	1.000	.740

Extraction Method: Principal Component Analysis.

		Initial Eigenvalues			Extraction Sums of Squared Loadings			Sums of Square	d Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.860	21.447	21.447	3.860	21.447	21.447	2.621	14.558	14.558
2	2.275	12.640	34.087	2.275	12.640	34.087	2.303	12.794	27.353
3	1.738	9.658	43.745	1.738	9.658	43.745	1.748	9.711	37.063
4	1.436	7.975	51.720	1.436	7.975	51.720	1.696	9.420	46.483
5	1.244	6.910	58.630	1.244	6.910	58.630	1.682	9.343	55.826
6	1.104	6.131	64.761	1.104	6.131	64.761	1.608	8.936	64.761
7	.952	5.289	70.050						
8	.847	4.703	74.753						
9	.777	4.316	79.069						
10	.668	3.714	82.783						
11	.620	3.442	86.225						
12	.532	2.953	89. 1 78						
13	.491	2.727	91.904						
14	.412	2.287	94.191						
15	.312	1.735	95.926						
16	.295	1.637	97.563						
17	.259	1.439	99.002						
18	.180	.998	100.000						

Total Variance Explained

Extraction Method: Principal Component Analysis.

Rotated Component Matrix^a

Component 1 2 3 4 5 6 Price on Road -.063 .143 -.229 -.149 .802 -.026 Brand Name .278 .156 -.587 .216 .264 .459 Engine Capacity .116 .668 -.082 -.182 .173 .346 Looks & Design .137 .030 .060 .138 -.059 .847 Fuel Efficiency -.081 .822 .106 .109 .037 -.049 Discount Schme -.188 .046 -.001 .250 .369 .588 Resale Value -.084 .095 .203 .359 .191 .670 After Sale Services .201 .081 .687 .157 .103 -.018 Running and .230 .677 .277 .074 .195 -.232 Maintaining Cost Convenience Features .645 .000 .221 -.007 -.025 .163 Purpose of Purchase -.195 -.108 .403 -.128 .675 .113 Performance .296 .291 .614 -.062 .082 .165 Information Available Driving Pleasure .662 .088 .161 .389 -.072 .081 Car Image & Positioning .309 -.084 .333 .591 -.033 .127 Economical .141 .527 .054 .287 .114 -.585 Colours Available .754 -.083 .068 .088 .026 .082 Advertising & Marketing .337 -.057 -.041.557 .181 .038 Safety .788 .280 -.036 .029 -.063 -.186

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 19 iterations.

- What will you infer from the KMO statistics and Bartlett's test of sphericity.
- How many factors are extracted? How much is the total variance explained by the factors extracted?
- Which are the factors that influence the purchase of B-segment cars in India?

Q4. A major Indian FMCG company wants to map the profile of its target market in terms of lifestyle, attitudes and perceptions. The company's managers prepare, with the help of their marketing research team, a set of 15 statements, which they feel measure many of the variables of interest. These 15 statements are given below. The respondent had to agree or disagree (1 = Strongly Agree, 2 = Agree, 3 = Neither Agree nor Disagree, 4 = Disagree, 5 = Strongly Disagree) with each statement.

1. I prefer to use e-mail rather than write a letter.

- 2. I feel that quality products are always priced high.
- 3. I think twice before I buy anything.
- 4. Television is a major source of entertainment.
- 5. A car is a necessity rather than a luxury.
- 6. I prefer fast food and ready to use products.
- 7. People are more health conscious today.
- 8. Entry of foreign companies has increased the efficiency of Indian companies.
- 9. Women are active participants in purchase decisions.
- 10. I believe politicians can play a positive role.
- 11. I enjoy watching movies.
- 12. If I get a chance, I would like to settle abroad.
- 13. I always buy branded products.
- 14. I frequently go out on weekends.
- 15. I prefer to pay by credit card rather than in cash.

20 respondents answered the questionnaire

Following is the output

In stage 2, a k-means clustering is run with 3 cluster solution. The following are the final cluster centers. **Final Cluster Centers**

Final Cluster Centers						
	Cluster					
	1	2	3			
VAR00001	2.00	2.80	3.43			
VAR00002	2.25	2.20	3.43			
VAR00003	3.63	3.20	2.43			
VAR00004	2.88	2.60	3.43			
VAR00005	3.13	2.60	3.71			
VAR00006	4.50	3.40	3.29			
VAR00007	2.50	1.40	4.14			
VAR00008	2.75	4.60	1.71			
VAR00009	3.63	1.80	2.43			
VAR00010	3.00	3.00	3.86			
VAR00011	3.63	4.20	3.29			
VAR00012	2.50	3.60	3.29			
VAR00013	2.75	2.40	3.86			
VAR00014	2.75	2.40	3.86			
VAR00015	4.13	1.80	2.57			

• Map the profile of cluster 3 and suggest your marketing and communication plan for this target segment.

Q5. A set of 8 brands of TV available in the Indian market are taken and multidimensional scaling is used to determine how these 8 brands are perceived by Indian consumers. Data were collected from a sample of respondents each of whom was asked to rate the dissimilarity between all pairs of TV brands on a numerical scale. If you want to launch a new brand of TV in the same market what would be your positioning strategy.

		Varl	Var2	Var3	Var4	Var5	Var6	Var7	Varð
TV Brands									
I V Brands	Varl	.00	3.00	6.00	8.00	1.00	2.00	7.0	8.00
1. Aiwa		2.00	00	4.00	C 00	4.00	5.00	0.00	5.00
2 Videocon	Var2	5.00	00	4.00	6.00	4.00	5.00	2.00	5.00
z. videocon	Var3	6.00	4.00	.00	3.00	2.00	4.00	6.00	1.00
3. LG	·····								
	Var4	8.00	6.00	3.00	.00	3.00	5.00	4.00	7.00
4. Samsung									
5. Sonv	Var5	1.00	4.00	2.00	3.00	.00	2.00	8.00	5.00
6 0 il	Var6	2.00	5.00	4.00	5.00	2.00	.00	3.00	6.00
6. Onida									
7. Thomson	Var7	7.00	2.00	6.00	4.00	8.00	3.00	.00	5.00
8. BPL	Var8	8.00	p.00	1.00	/.00	P.00	6.00	P.00	.00

The three important factors important for the customers for the choice of TV are -

Dimension 1 : Value for Money

Dimension 2 : After Sales Service

Dimension 3 : Current Brand Image

• Which solution will you consider from the following output for your inference?why?

The following is the output.

One Dimension Solution Stress = .43158 RSQ = .35255

Stimulus Coordinates

Dimension

Stimulus Stimulus 1 Number Name

1	VAR00001	1.6474
2	VAR00002	.4073
3	VAR00003	.0704
4	VAR00004	-1.2044
5	VAR00005	1.0409
6	VAR00006	.2644
7	VAR00007	-1.2424
8	VAR00008	9837

Two Dimension Solution Stress = .24021 RSQ = .58135

Stimulus Coordinates

Dimension

Stimulus Stimulus 1 2 Number Name

1	VAR00001	1.6156	.4725
2	VAR00002	2760	1.3795
3	VAR00003	2540	-1.0559
4	VAR00004	-1.2855	7792
5	VAR00005	.9600	9336
6	VAR00006	1.1045	.0665
7	VAR00007	5681	1.5126
8	VAR00008	-1.2967	6624

Three Dimension Solution Stress = .05230 RSQ = .96043

Stimulus Coordinates

Dimension

Stimul Numb	us er	Stimulus Name	5 1	2 3	3
4	\ / A	D00004	1 0510	2020	0664
I	VA	R00001	1.9512	.2028	.0004
2	VA	R00002	1995	1.3140	.7743
3	VA	R00003	6043	-1.3429	.4679
4	VA	R00004	9038	2968	-1.8497
5	VA	R00005	.8931	-1.0092	0350
6	VA	R00006	1.1045	.1529	7070
7	VA	R00007	-1.1031	1.6088	31289
8	VA	R00008	-1.1381	6295	1.4121

• For practical purpose interpret the 2 dimensional plot below for designing the

positioning strategy for your new brand to launch in the same market.

Derived Stimulus Configuration