University of Mumbai

Examination 2020 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination Commencing from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III
Course Code: ELC303 and Course Name: Digital Logic Circuits
Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	What is the decimal equivalent of $(11111)_{2}$.
Option A:	$(41)_{10}$
Option B:	$(21)_{10}$
Option C:	$(31)_{10}$
Option D:	$(11)_{10}$
2.	What is the reflected binary code of $(100101)_{2 .}$.
Option A:	111000
Option B:	101010
Option C:	101111
Option D:	110111
3.	Given the two binary numbers $\mathrm{x}=1010100$ and $\mathrm{y}=1000011$ perform the subtraction x-y, using 2's complement.
Option A:	0010001
Option B:	1101110
Option C:	111111
Option D:	0000111
4.	How many two-input AND and OR gates are required to realize Y = AB+CD+E?
Option A:	2,2
Option B:	2,3
Option C:	3,2
Option D:	3,3
5.	If a half adder has A and B as the inputs, then the sum is given by
Option A:	A EX-NOR B
Option B:	A OR B
Option C:	A AND B
Option D:	A XOR B
6.	What are the number of select lines required for a 8:1 multiplexer?
Option A:	1

Option B:	2
Option C:	3
Option D:	4
7.	A decoder converts ' n ' inputs to ___ number of outputs.
Option A:	$2^{\text {n }}$
Option B:	n
Option C:	n^{2}
Option D:	2n
8.	A basic latch circuit consists of
Option A:	one comparator
Option B:	three adders
Option C:	two inverters
Option D:	one amplifier
9.	A ' n-stage' Johnson counter will circulate a single data bit giving sequence of number of states.
Option A:	2n
Option B:	n
Option C:	$\mathrm{n}+1$
Option D:	n^{2}
10.	A decade counter can be implemented with how many number of flip flops?
Option A:	10
Option B:	5
Option C:	4
Option D:	8
11.	MSI counter IC74163 is
Option A:	4 bit up counter with synchronous preset and clear
Option B:	ripple counter
Option C:	decade counter
Option D:	4 bit up counter with asynchronous preset and clear
12.	In a sequential circuit designed as a moore machine, the output depends on
Option A:	present state
Option B:	past state
Option C:	next state
Option D:	external inputs
13.	IC 7490 is a
Option A:	Group A Asynchronous counter IC
Option B:	Group B Asynchronous counter IC
Option C:	Group C Asynchronous counter IC
Option D:	synchronous counter
14.	The internal structure of MSI counter IC 7493 consist of

Option A:	Mod 2 and Mod 6 counter		
Option B:	Mod 2 and Mod 8 counter		
Option C:	Mod 5 and Mod 8 counter		
Option D:	Mod 2 and Mod 5 counter		
15.	An AND gate with 8 input has a fan-out of		
Option A:	8		
Option B:	4		
Option C:	2		
Option D:	1		
16.	What does FPGA stand for		
Option A:	Field Programming Gate Array		
Option B:	Field Programmable Gate Array		
Option C:	First Program Gate Array		
Option D:	First Programmable Gate Array		
17.	Programmable Array Logic has		
Option A:	a programmable AND and fixed OR array		
Option B:	a programmable AND and a programmable OR array		
Option C:	only a programmable AND array		
Option D:	only a programmable OR array		
18.	In verilog HDL the operator <= is used for		
Option A:	Blocking assignment		
Option B:	Non-Blocking assignment		
Option C:	Single line comment		
Option D:	Logical left shift		
19.	Which type of modeling style is not used in verilog hardware description language Option D:		
Option A:	Structural		
Option B:	Datatype		
Option C:	Behavioral		
Option D:	Data Flow		
Option A:	assign Y= (A*B) $)$ C C		
Option B:	assign Y= (A.B)+C		
	assign Y= (A^B) C		

Q2. (20 Marks Each)	
A	Solve any Two 5 marks each
i.	Design and implement a half adder using gates.
ii.	State and prove De-Morgan's theorem.
iii.	Compare mealy and moore machines.
B	Solve any One 10 marks each
i.	Design a Mod-10 asynchronous counter using J-K Flip-Flops.
ii.	Write a program using Verilog HDL to implement a 8:1 multiplexer.

Q3. (20 Marks Each)	
A	Solve any Two 5 marks each
i.	Write a short note on Complex Programmable Logic Devices.
ii.	Convert a JK Flip-Flop to T Flip-Flop.
iii.	Write a program for a D flip-flop with asynchronous reset using Verilog HDL.
B	Solve any One 10 marks each
i.	Design and implement full subtractor circuit using a 3:8 decoder IC 74138.
ii.	Analyze the given state machine and draw the state diagram.

University of Mumbai

Examination 2020 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination Commencing from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III
Course Code: ELC303 and Course Name: Digital Logic Circuits

Time: 2 hour

Max. Marks: 80

Q1:

Question Number	Correct Option (Enter either ' A ' or ' B ' or ' C^{\prime} or ' D ')
Q1.	C
Q2.	D
Q3.	A
Q4	A
Q5	D
Q6	C
Q7	A
Q8.	C
Q9.	A
Q10.	C
Q11.	A
Q12.	A
Q13.	A
Q14.	B
Q15.	D
Q16.	B
Q17.	A
Q18.	B
Q19.	B
Q20.	D

Important steps and final answer for the questions involving numerical example

Q2(A) i: Step 1:Truth Table of Half Adder

Inputs		Outputs	
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{S}	\boldsymbol{C}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Step 2:
$\mathrm{S}=\bar{A} \mathrm{~B}+\mathrm{A} \bar{B}=\mathrm{A} \oplus B$
$\mathrm{C}=\mathrm{A} . \mathrm{B}$
Step 3:

Q2 (B) i
Step 1:Truth table of Mod 10 counter

Clock Count	Output bit Pattern				Decimal Value
	QD	QC	QB	QA	
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	2
4	0	0	1	1	3
5	0	1	0	0	4
6	0	1	0	1	5
7	0	1	1	0	6
8	0	1	1	1	7
9	1	0	0	0	8
10	1	0	0	1	9
11	Counter Resets its Outputs back to Zero				

Step 2:
Circuit Diagram

Step 3:
Timming Diagram

Q2 (B)(ii)

```
module Mulitplexer(d0,d1,d2,d3,d4,d5,d6,d7,sel,out); input d0,d1,d2,d3,d4,d5,d6,d7;
input [2:0] sel;
output reg out;
always@(sel)
begin
case(sel)
3'b000:out=d0;
3'b001:out=d1;
3'b010:out=d2;
3'b011:out=d3;
3'b100:out=d4;
3'b101:out=d5;
3'b110:out=d6;
3'b111:out=d7; endcase
end
endmodule
```

Q3 A(ii)
Truth Table of D Flip-flop

Input	Outputs	
	PresentState	NextState
\mathbf{D}	$\mathbf{Q}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n + 1}}$
0	0	0
0	1	0
1	0	1
1	1	1

Excitation Table of JK Flip-flop

Outputs		Inputs	
Present State	Next State		
\mathbf{Q}_{n}	$\mathbf{Q}_{\mathrm{n}+1}$	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

J-K to D conversion Table

D Input	Outputs			JK Inputs	
	Present State	Next State			
\mathbf{D}	$\mathbf{Q}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n + 1}}$	\mathbf{J}		\mathbf{K}
0	0	0	0	X	
0	1	0	X	1	
1	0	1	1	X	
1	1	1	X	0	

K-Map

Circuit Diagram:

Q3A(iii)
module DFlipFlop (D, clk, reset, Q);
input D; // Data input
input clk; // clock input
input reset; // asynchronous reset
output reg Q; // output Q
always @(posedge clk or posedge reset)

begin

if(reset==1'b1)
$\mathrm{Q}<=1 \mathrm{~b} 0$;
else
$\mathrm{Q}<=\mathrm{D}$;
end
endmodule

Q3 B(i) Truth Table of Full Subtractor

\mathbf{A}	\mathbf{B}	$\mathbf{B}_{\text {in }}$	\mathbf{D}	$\mathbf{B}_{\text {out }}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$\mathrm{D}=\sum m(1,2,4,7)$
$\mathrm{B}=\sum m(1,2,3,7)$

Circuit Diagram:

Q3 B(ii)
Flip -Flop Equations:
$\begin{array}{ll}J_{A}=B & K_{A}=B x^{\prime} \\ J_{B}=x^{\prime} & K_{B}=A \oplus x\end{array}$

Next State Equations:

$$
\begin{aligned}
\mathbf{A}(\mathbf{t}+\mathbf{1}) & =J_{A} \mathbf{Q}^{\prime}+K_{A}^{\prime} \mathbf{Q}_{\mathrm{A}} \\
& =A^{\prime} \mathbf{B}+\mathbf{A B} \mathbf{B}^{\prime}+\mathbf{A x} \\
\mathbf{B}(\mathbf{t}+\mathbf{1}) & =\mathbf{J}_{\mathrm{B}} \mathbf{Q}^{\prime}{ }_{\mathrm{B}}+\mathbf{K}_{\mathrm{B}}^{\prime} \mathbf{Q}_{\mathrm{B}} \\
& =\mathbf{B}^{\prime} \mathbf{x}^{\prime}+\mathbf{A B x}+\mathbf{A}^{\prime} \mathbf{B x} \mathbf{x}^{\prime}
\end{aligned}
$$

State Table:

Present State		$\mathbf{1 / P}$	$\begin{aligned} & \text { Next } \\ & \text { State } \end{aligned}$		Flip-Flop Imputs			
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Transition Diagram

