University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 23 $^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021
Program: Bachelor of Engineering
Curriculum Scheme: Electronics \& Telecommunication (Rev2019 "C")
Examination: SE Semester III
Course Code: ECC305 and Course Name: Electronic Instrumentation \& Control Systems
Time: 2 Hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	On which principle Wheatstone bridge works?
Option A:	full deflection
Option B:	partial deflection
Option C:	null deflection
Option D:	no diffraction
2.	The simplest type of bridge used for the measurement of medium inductance is a -
Option A:	Maxwell
Option B:	Schering
Option C:	Hey
Option D:	Wheatstone
3.	The principle of Homogeneity and superposition is applied to ---
Option A:	Linear time-variant system
Option B:	Non-linear time-variant system
Option C:	Linear time-invariant system
Option D:	Non-linear time-invariant system
4.	In Force-Voltage analogy, damper is analogous to - - -
Option A:	Inductance
Option B:	Charge
Option C:	Current
Option D:	Resistance
5.	A Schering bridge can be used for the ----
Option A:	protecting the circuit from temperature rises
Option B:	testing capacitors
Option C:	measuring voltages
Option D:	measuring currents
6.	The overall transfer function, from block diagram reduction, for parallel blocks is
Option A:	Sum of individual gain

Option B:	Difference of individual gain
Option C:	Product of individual gain
Option D:	Division of individual gain
7.	The steady state error due to a step input $A u(t)$ is given by ---
Option A:	$A /(1+K p)$
Option B:	$A / K p$
Option C:	1/AKp
Option D:	$K p /(1+A)$
8.	What is the Type and the Order of the system, $G(s)=\frac{100(s+5)(s+30)}{s^{3}(s+2)\left(s^{2}+3 s+10\right)}$.
Option A:	4 and 9
Option B:	4 and 7
Option C:	3 and 5
Option D:	3 and 6
9.	Which among the following second order systems will take more time to reach it's steady state value?
Option A:	Undamped system
Option B:	Critically damped system
Option C:	Overdamped system
Option D:	Underdamped system
10.	The characteristic equation of a system is given below. Find the range of values for k . $\mathrm{s}^{3}+3 \mathrm{ks}^{2}+(\mathrm{k}+2) \mathrm{s}+4=0$
Option A:	$0<\mathrm{k}<0.523$
Option B:	$0.527<\mathrm{k}<$ infinity
Option C:	$0.678<\mathrm{k}<$ infinity
Option D:	$0.21<\mathrm{k}<0.527$
11.	Function of transducer is to convert --- -
Option A:	Electrical signal into non electrical quantity
Option B:	Electrical signal into mechanical quantity
Option C:	Non electrical quantity into electrical signal
Option D:	To do nothing
12.	The change in loading and unloading curves is known as ----
Option A:	Zero drift characteristics
Option B:	Sensitivity drift
Option C:	Hysteresis
Option D:	Zero drift plus sensitivity drift characteristics

13	Phase margin of the system is used to specif
Option A:	relative stability
Option B:	absolute stability
Option C:	time response
Option D:	frequency response
14.	If damping ratio of a given system is 0.5 , then the lines joining complex poles with origin are inclined to negative real axis at ----
Option A:	$\pm 90 \mathrm{deg}$
Option B:	$\pm 60 \mathrm{deg}$
Option C:	$\pm 45 \mathrm{deg}$
Option D:	$\pm 30 \mathrm{deg}$
15.	In Bode diagram, the factor $1 /(j w)(j w)$ in the transfer function gives a line having slope
Option A:	20 dB per decade
Option B:	40 dB per decade
Option C:	-20 dB per decade
Option D:	-40 dB per decade
16.	Where are the closed loop poles of the following system located? $G(s) H(s)=\frac{1}{s^{2}+49}$
Option A:	They are located on negative real axis
Option B:	They are located on $j w$ axis
Option C:	They are located on right half of s-plane
Option D:	They are located, one on the right half and one on the left half
17.	The open loop transfer function of a unity feedback system is given by $G(s)=\frac{K(s+2)}{s\left(s^{2}+2 s+2\right)}$. The centroid is ----
Option A:	0
Option B:	-1/2
Option C:	-2/3
Option D:	1/2
18.	Gain margin is the reciprocal of the gain at the frequency at which the phase angle is ----
Option A:	90 deg
Option B:	180 deg
Option C:	-180 deg
Option D:	0 deg
19.	A system has 8 poles and 3 zeros. The slope of its highest frequency asymptote in its magnitude plot is ----
Option A:	$-40 \mathrm{~dB} /$ decade
Option B:	$-60 \mathrm{~dB} /$ decade
Option C:	-100 dB/decade
Option D:	$-150 \mathrm{~dB} /$ decade

20.	Settling time is inversely proportional to product of the damping ratio and $-\cdots$
Option A:	Time constant
Option B:	Maximum overshoot
Option C:	Peak time
Option D:	Undamped natural frequency

Q2.	Answer the following :
A	Solve any Two
i.	Explain functional blocks of a measurement system.
ii.	Compare temperature transducers RTD and Thermocouple. iii. having forward path transfer function as $G(s)=\frac{36}{s(s+8)}$.
B	Solve any One for a unity feedback system
i.	Obtain transfer function of the block diagram shown in figure - marks each ii.

Q3.	Answer the following :
A	Solve any Two
i.	Explain the working principle of LVDT with a neat sketch. 5 marks each
ii.	What are compensators? Why are they needed in control systems?
ii.	Sketch polar plot of $G(s)=\frac{1}{s(s+a)(s+b)}$. B i. Solve any One ii. Draw Bode plot for a unity feedback control system with open loop transfer function, $G(s)=\frac{K}{s(1+s)(1+0.1 s)}$. Investigate the $s t a b i l i t y ~ o f ~ t h e ~ s y s t e m ~ t h a t ~ h a s ~ t h e ~ c h a r a c t e r i s t i c ~ e q u a t i o n ~: ~$ $s^{5}+2 s^{4}+24 \mathrm{~s}^{3}+48 \mathrm{~s}^{2}-25 \mathrm{~s}-50=0$

University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)
Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Bachelor of Engineering
Curriculum Scheme: Electronics \& Telecommunication (Rev2019 "C")
Examination: SE Semester III
Course Code: ECC305 and Course Name: Electronic Instrumentation \& Control Systems Time: 2 hour

Max. Marks: 80

Question Number	Correct Option (Enter either ' A ' or ' B ' or 'C' or 'D')
Q1.	C
Q2.	A
Q3.	C
Q4	D
Q5	B
Q6	A
Q7	A
Q8.	D
Q9.	C
Q10.	B
Q11.	C
Q12.	C
Q13.	A
Q14.	B
Q15.	D
Q16.	B
Q17.	A
Q18.	C
Q19.	C
Q20.	D

