University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Electronics and Telecommunication

Curriculum Scheme: Rev2019

Examination: SE

Semester III

Course Code: ECC303 and Course Name: Digital System Design

Time: 2 Hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	A full adder can be made out of	
Option A:	two half adders	
Option B:	two half adders and a OR gate	
Option C:	two half adders and a NOT gate	
Option D:	three half adders	
2.	POS expressions can be implemented usinglogic circuit.	
Option A:	2-level OR-AND	
Option B:	2-level OR-AND and NOR	
Option C:	2-level XOR	
Option D:	2-level NOR	
3.	To program basic logic functions which type of PLD should be used?	
Option A:	PAL	
Option B:	PLA	
Option C:	CPLD	
Option D:	SLD	
4.	Sequential structure of VHDL	
Option A:	Library Declaration; Configuration; Entity Declaration; Architecture Declaration	
Option B:	Library Declaration; Entity Declaration; Configuration; Architecture Declaration	
Option C:	Library Declaration; Configuration; Architecture Declaration; Entity Declaration	
Option D:	Library Declaration; Entity Declaration; Architecture Declaration; Configuration	
5.	VHDL is based on which programming language	
Option A:	C	
Option B:	PHP	
Option C:	Assembly	
Option D:	ADA	
6.	TTL inputs are the emitters of a	
Option A:	Transistor-transistor logic	
Option B:	Multiple-emitter transistor	
Option C:	Resistor-transistor logic	
Option D:	Diode-transistor logic	

7.	In case of XOR/XNOR simplification we have to look for the following		
Option A:	Both Diagonal and Straight Adjacencies		
Option B:	Only Offset Adjacencies		
Option C:	Both Offset and Straight Adjacencies		
Option D:	Both Diagonal and Offset Adjacencies		
8.	On addition of 28 and 18 using 2's complement, we get		
Option A:	00101110		
Option B:	0101110		
Option C:	00101111		
Option D:	1001111		
9.	One example of the use of an S-R flip-flop is as		
Option A:	Transition pulse generator		
Option B:	Racer		
Option C:	Switch debouncer		
Option D:	Astable oscillator		
10.	Being a universal gate, it is possible for NOR gate to get converted into AND gate		
	by inverting the inputs		
Option A:	before getting applied to NOR gate		
Option B:	after getting applied to NOR gate		
Option C:	before getting applied to AND gate		
Option D:	after getting applied to AND gate		
11.	On subtracting (01010)2 from (11110)2 using 1's complement, we get		
Option A:			
Option B:	11010		
Option C:	10101		
Option D:	10100		
Option D.			
12	Which of the following is the most widely employed logic family?		
Option A:	Emitter-coupled logic		
Option B:	Transistor-transistor logic		
Option C:	CMOS logic family		
Option D:	NMOS logic		
• p • • • • • • • •			
13.	The time required for a gate or inverter to change its state is called		
Option A:	Rise time		
Option B:	Decay time		
Option C:	Propagation time		
Option D:	Charging time		
14.	Internal propagation delay of asynchronous counter is removed by		
Option A:	Ripple counter		
Option B:	Ring counter		
Option C:	Modulus counter		

Option D:	Synchronous counter	
15.	One of the major drawbacks to the use of asynchronous counters is that	
Option A:	Low-frequency applications are limited because of internal propagation delays	
Option B:	High-frequency applications are limited because of internal propagation delays	
Option C:	C: Asynchronous counters do not have major drawbacks and are suitable for us	
	high- and low-frequency counting applications	
Option D:	Asynchronous counters do not have propagation delays, which limits their use in	
	high-frequency applications	
16.	What is the preset condition for a ring shift counter?	
Option A:	All FFs set to 1	
Option B:	All FFs cleared to 0	
Option C:	A single 0, the rest 1	
Option D:	A single 1, the rest 0	
17.	In a positive edge triggered JK flip flop, a low J and low K produces?	
Option A:	High state	
Option B:	Low state	
Option C:	Toggle state	
Option D:	No Change State	
1.0		
18.	which is the major functioning responsibility of the multiplexing combinational circuit?	
Option A [.]	Decoding the binary information	
Option B:	Generation of all minterms in an output function with OR-gate	
Option C ⁻	Generation of selected path between multiple sources and a single destination	
Option D:	Encoding of binary information	
19.	The octal number (651.124)8 is equivalent to	
Option A:	(1A9.2A)16	
Option B:	(1B0.10)16	
Option C:	(1A8.A3)16	
Option D:	(1B0.B0)16	
20.	The addition of +19 and +43 results as in 2's complement system.	
Option A:	11001010	
Option B:	101011010	
Option C:	00101010	
Option D:	0111110	

Subjective/Descriptive Questions

Option 1

Q2	Solve any Four out of Six	5 marks each
(Total 20 Marks)		
А	Compare SRAM with DRAM.	
В	Design full adder using 3:8 decoder.	
С	Convert (532.125) base 8, into decimal, binary and hexadec	cimal.
D	VHDL Code for full Adder.	
Е	Convert JK Flip Flop to T Flip Flop.	
F	Compare TTL and CMOS Logic Families.	

Option 2

Q3.	Solve any Two Questions out of Three10 marks each
(Total 20 Marks)	
А	Design 3 bit gray to binary converter.
В	Minimize the following expression using Quine Mc-cluskey technique. $F(A,B,C,D)=\sum M(0,1,2,3,5,7,9,11)$
С	Design Synchronous counter using T-type flip flops for getting the following sequence 0-2-4-6-0.take care of lockout condition.

University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Electronics & Telecommunication

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: ECC303 and Course Name: Digital System Design

Time: 2-hour

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	В
Q3.	А
Q4	D
Q5	D
Q6	В
Q7	D
Q8.	В
Q9.	С
Q10.	А
Q11.	D
Q12.	В
Q13.	С
Q14.	D
Q15.	В
Q16.	D
Q17.	D
Q18.	С
Q19.	А
Q20.	D