University of Mumbai

Examination 2020 under cluster__ (Lead College: _____)
Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Information Technology
Curriculum Scheme: Rev 2019
Examination: Second Year Semester III
Course Code: ITC301 and Course Name: Engineering Mathematics-3
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Laplace transform of $\cos (\sqrt{3} t)$ is
Option A:	$\frac{s}{s^{2}+9}$
Option B:	$\frac{s}{s^{2}-9}$
Option C:	$\frac{s}{s^{2}+3}$
Option D:	$\frac{s}{s^{2}-3}$
2.	The value of $\int_{0}^{\infty} e^{-3 t}\left(\frac{\sinh t}{t}\right) d t$ is
Option A:	$\frac{1}{3} \ln 3$
Option B:	$\frac{1}{3} \ln \left(\frac{1}{3}\right)$
Option C:	$\frac{1}{2} \ln 2$
Option D:	$\frac{1}{2} \ln \left(\frac{1}{2}\right)$
Option B:	$\frac{2}{(s+1)^{3}}$
3.	Laplace transform of $f(t)=t^{2} e^{-t}$ is
Option A:	$\frac{2}{(s-1)^{3}}$

Option C:	$\frac{\Gamma(2)}{(s-1)^{3}}$
Option D:	$\frac{\Gamma(2)}{(s+1)^{3}}$
4.	Laplace transform of $\int_{0}^{t} \sin 2 t \cosh 2 t d t$ is
Option A:	$\frac{1}{s}\left[\frac{1}{(s-2)^{2}-4}-\frac{1}{(s+2)^{2}-4}\right]$
Option B:	$\frac{1}{s}\left[\frac{1}{(s-2)^{2}-4}+\frac{1}{(s+2)^{2}-4}\right]$
Option C:	$\frac{1}{s}\left[\frac{1}{(s-2)^{2}+4}-\frac{1}{(s+2)^{2}+4}\right]$
Option D:	$\frac{1}{s}\left[\frac{1}{(s-2)^{2}+4}+\frac{1}{(s+2)^{2}+4}\right]$
5.	Inverse Laplace transform of $\frac{s-1}{s^{2}}$ is
Option A:	$-1-t$
Option B:	$-1+t$
Option C:	$1+t$
Option D:	$1-t$
6.	$L^{-1}\left[\frac{s+2}{s^{2}+4 s+5}\right]$ is
Option A:	$e^{-2 t}$ cost
Option B:	$e^{-2 t} \sin t$
Option C:	$e^{2 t} \cos t$
Option D:	$e^{2 t} \sin t$
7.	$L^{-1}\left(\tan ^{-1} s\right)$ is
Option A:	$\frac{\sin t}{t}$
Option B:	$\frac{\cos t}{t}$
Option C:	$-\frac{\sin t}{t}$
Option D:	$-\frac{\cos t}{t}$

8.	$L^{-1}\left[\frac{s\left(2 s^{2}-3\right)}{\left(s^{2}+1\right)\left(s^{2}-4\right)}\right]$ is
Option A:	$\cosh t+\cosh 2 t$
Option B:	$\cos t+\cosh 2 t$
Option C:	$\cos t+\cos 2 t$
Option D:	$\cosh t+\cos 2 t$
9.	Fourier coefficient a_{2} for $\mathrm{f}(\mathrm{x})=\mathrm{x}$, x belongs to $(-1,1)$ is
Option A:	-1
Option B:	1
Option C:	0
Option D:	2
10.	Fourier coefficient b_{1} for $f(x)=x \cdot \sin x$, where $x \in(0,2 \pi)$ is
Option A:	0
Option B:	π
Option C:	$-\pi$
Option D:	$\frac{\pi}{\sqrt{2}}-\frac{\pi}{\sqrt{3}}$
11.	Fourier coefficient a_{0} in half range cosine series for $f(x)=e^{x}, x \in(0,1)$ is
Option A:	e+1
Option B:	-e-1
Option C:	-e+1
Option D:	e-1
12.	Value of constant real number m such that $f(z)=f(x+i y)=e^{3 m x+2 i y}$ is analytic function is
Option A:	2/3
Option B:	-2/3
Option C:	3/2
Option D:	-3/2

$\begin{gathered} \hline \text { Q2 } \\ \text { (20 Marks) } \end{gathered}$	Solve any Four out of Six			5 marks each		
A	Find Laplace transform of $f(t)=\sin ^{2} t \cos ^{3} t$.					
B	Using convolution theorem find the inverse Laplace transform of$\varnothing(s)=\frac{s}{s^{4}-1}$					
C	Find Fourier series of $f(x)=x \sin x$ in $(-\pi, \pi)$.					
D	Find an analytic function $\omega=f(z)=u+i v$, where $z=x+i y$, whose real part is $u(x, y)=x^{2}-y^{2}+2 y-\sin (x) \cdot \sinh (y)$					
E	Calculate Spearman's coefficient of rank correlation and Pearson's coefficient of correlation from the following data on height and weights of 5 students.					
	Height (in inches)	61	63	65	67	69
	Weight(In kgs)	64	62	65	70	72

F	The warranty of electronic device in thousand of days has the density function $f(x)=\left\{\begin{array}{l}4 e^{-4 x}, x>0 \\ 0, \\ \text { otherwise }\end{array}\right.$ Find the expected warranty of the device.

$\begin{gathered} \text { Q3 } \\ \text { (20 Marks) } \\ \hline \end{gathered}$	Solve any Four out of Six						5 marks each	
A	$\begin{aligned} & \text { Given } f(t)=\left\{\begin{array}{c} 4,0 \leq x<3 \\ 0, \\ \text { Find } L[f(t)], \\ L\left[f^{\prime}(t)\right] . \end{array} .\right. \end{aligned}$							
B	Find inverse Laplace transform of $\emptyset(s)=\frac{3 s^{2}+11 s+11}{s^{3}+6 s^{2}+11 s+6}$							
C	Find half range sine series for $f(x)=e^{-x}, 0<x<1$.							
D	In the polar coordinates, let $\omega=u+i v, \quad u(r, \theta)=r^{2} \sin 2 \theta$. Show that u satisfies Laplace's equation and find $v(r, \theta)$.							
E	Fit a second degree parabolic curve to the following data.							
		0	1	2	3	4	5	6
		1	1	3	7	13	21	31
F	A random variable X has the probability distribution $P(X=x)=\frac{1}{16}\left(4 C_{x}\right)$ $x=0,1,2,3,4$. Write Probability distribution and find standard deviation.							

University of Mumbai

Examination 2020 under cluster _ (Lead College: \qquad)
Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Information Technology
Curriculum Scheme: Rev 2019
Examination: Second Year Semester III
Course Code: ITC301 and Course Name: Engineering Mathematics-3
Time: 2 hour
Max. Marks: 80

Question Number	Correct Option Enter either 'A' or ' \mathbf{B} ' or ' ' $\mathbf{'}^{\prime}$ or ' \mathbf{D} ')
Q1.	A
Q2.	C
Q3.	B
Q4	D
Q5	D
Q6	A
Q7	C
Q8.	B
Q9.	C
Q10.	B
Q11.	D
Q12.	A
Q13.	C
Q14.	C
Q15.	B
Q16.	D
Q17.	B
Q18.	A
Q19.	D
Q20.	

