Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: MEAI Semester I
Course Code: MEAIC103 and Course Name: Mathematical Foundations of Data Science Time: 2 hour

Max. Marks: 80
$=$

Qu-1	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The Central Limit Theorem says that the sampling distribution of the sample mean is approximately normal if
Option A:	all possible samples are selected
Option B:	the sample size is large
Option C:	the standard error of the sampling distribution is small
Option D:	the population size is large
2.	A researcher wishes to find out about the mean of a population. She takes a sample, calculates the sample mean and works out the 95% confidence interval for the population mean. Which of the following results would she prefer?
Option A:	The confidence interval is very wide
Option B:	The confidence interval is very narrow
Option C:	It makes no difference to her what the width of the confidence interval is
Option D:	The mean is large
3.	Parametric test, unlike the non-parametric tests, make certain assumptions about
Option A:	The population size
Option B:	The underlying distribution
Option C:	The sample size
Option D:	The data size
4.	The sampling error is defined as?
Option A:	difference between population and parameter
Option B:	difference between sample and parameter
Option C:	difference between parameter and sample
Option D:	difference between population and sample
5.	Two types of errors associated with hypothesis testing are Type I and Type II. Type II error is committed when
Option A:	We reject the null hypothesis whilst the alternative hypothesis is true
Option B:	We reject a null hypothesis when it is true
Option C:	We accept a null hypothesis when it is not true
Option D:	We accept a null hypothesis when it is true
6.	The area under a standard normal curve is?
Option A:	0

Option B:	∞
Option C:	not defined
Option D:	1
7.	Poisson distribution is applied for
Option A:	Continuous Random Variable
Option B:	Discrete Random Variable
Option C:	Irregular Random Variable
Option D:	Uncertain Random Variable
8.	Consider a random variable with exponential distribution with $\lambda=1$. Compute the probability for $\mathrm{P}(\mathrm{X}>3)$.
Option A:	e^{-1}
Option B:	e^{-2}
Option C:	e^{-3}
Option D:	e^{-4}
9.	An eigenvalue, corresponding to a real non zero eigenvector, points in a direction in which it is stretched by the transformation and the eigenvector is the factor by which it is stretched.
Option A:	True
Option B:	False
10.	Find the rank of matrix $\left[\begin{array}{cccc} -1 & 0 & -1 & 2 \\ 2 & 0 & 2 & 0 \\ 1 & 0 & 1 & -1 \end{array}\right]$
Option A:	2
Option B:	3
Option C:	0
Option D:	4
11.	What is the principle of factorization?
Option A:	Every square matrix can be expressed as a product of a lower triangular matrix and upper triangular matrix
Option B:	Determinant of an identity matrix is one
Option C:	There exists no inverse for a singular matrix
Option D:	Every matrix can be expressed as a sum of a skew symmetric and a symmetric matrix
12.	Which of the following is an application of the edit distance problem?
Option A:	Approximate string matching
Option B:	Spelling correction
Option C:	Similarity of DNA
Option D:	All of the mentioned

13.	Normal Distribution is symmetric is about
Option A:	Variance
Option B:	Standard Deviation
Option C:	Mean
Option D:	Covariance
14.	Covariance
Option A:	measures the degree to which two variables co-vary
Option B:	measures of the strength of relationship between two variables
Option C:	Dependents on the units of measurement of the variables
Option D:	All of the mentioned
15.	The magnitude of the difference between observed frequencies and expected frequencies is called
Option A:	Chi-square value
Option B:	F value
Option C:	Z value
Option D:	t value
16.	Which of the following statements is false?
Option A:	The t distribution is symmetric about zero
Option B:	The t distribution is more spread out than the standard normal distribution
Option C:	As the degrees of freedom get smaller, the t-distribution's dispersion gets smaller
Option D:	The t distribution is mound-shaped
17.	A random sample of size 20 taken from a normally distributed population resulted in a sample variance of 32 . The lower limit of a 90% confidence interval for the population variance would be:
Option A:	52.185
Option B:	20.170
Option C:	20.375
Option D:	54.931
18.	A dice is thrown twice. What is the probability of getting two numbers whose product is even?
Option A:	6/4
Option B:	1/2
Option C:	3/4
Option D:	5/4
19.	Let X and Y be two independent random variables. Which one of the relations between expectation (E), variance (Var) and covariance (Cov) given below is FALSE?
Option A:	$\mathrm{E}(\mathrm{XY})=\mathrm{E}(\mathrm{X}) \mathrm{E}(\mathrm{Y})$
Option B:	$\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0$
Option C:	$\operatorname{Var}(\mathrm{X}+\mathrm{Y})=\operatorname{Var}(\mathrm{X})+\operatorname{Var}(\mathrm{Y})$

Option D:	$\mathrm{E}\left(\mathrm{X}^{2} \mathrm{Y}^{2}\right)=(\mathrm{E}(\mathrm{X}))^{2}(\mathrm{E}(\mathrm{Y}))^{2}$
	A sample of 15 data is as follows: $17,18,17,17,13,18,5,5,6,7,8,9,20,17,3$. The mode of the data is
20.	4
Option A:	4
Option B:	13
Option C:	17
Option D:	20

Qu-2	
A	Solve any Two 5 marks each
i.	Describe correlation coefficient.
ii.	Explain global and local optima with graphical representation.
iii.	Justify the need of statistics from a data science perspective.
B	Solve any One 10 marks each
i.	The average number of major storms in your city is 2 per year. What is the probability that exactly 3 storms will hit your city next year?
ii.	Explain Correlation matrix with example.

Qu-3	
A	Solve any Two 5 marks each
i.	Explain Chi-Square test.
ii.	Describe bootstrap permutation test in detail.
iii.	Explain Cosine distance with example.
B	Solve any One 10 marks each
1.	Calculate Eigenvalue and Eigenvector for the given matrix. $\left[\begin{array}{lll} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end{array}\right]$
ii.	Illustrate significance of p value and alpha value with example. Describe Type I and Type II error in hypothesis testing.

University of Mumbai

Examination 2021 under cluster KJSIEIT

Examinations Commencing from 22 ${ }^{\text {nd }}$ April 2021 to 30 ${ }^{\text {th }}$ April 2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: MEAI Semester I
Course Code: MEAIC103 and Course Name: Mathematical Foundations of Data Science
Time: 2 hour Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	A
Q2.	B
Q3.	B
Q4	D
Q5	C
Q6	D
Q7	B
Q8.	C
Q9.	B
Q10.	A
Q11.	A
Q12.	D
Q13.	C
Q14.	D
Q15.	A
Q16.	C
Q17.	B
Q18.	C
Q19.	D
Q20.	c

