University of Mumbai

Examination 2020 under cluster 3 (Lead College: FCRIT)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021
to 20 ${ }^{\text {th }}$ January 2021
Program: F.E. (All branches) (Choice Based)
Curriculum Scheme: Rev2019
Examination: FE Semester I
Course Code: FEC104 and Course Name: Engineering Mechanics
Time: 2 hours
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The forces, which do meet at a point but lie in a single plane, are known as
Option A:	Coplanar concurrent forces
Option B:	Coplanar non-concurrent forces
Option C:	Non-coplanar concurrent forces
Option D:	Non-coplanar non-concurrent forces
2.	A force P acts from point ' A ' and passes through point ' B '. The moment of force ' P ' about point ' O ' is $2000 \mathrm{~N}-\mathrm{m}$ clockwise and zero at ' A ' and ' B '. What is the magnitude of force ' P ' if coordinate of A, B and O are $(0,0,5) \mathrm{m},(0.4,0) \mathrm{m}$ and $(0,0,0)$ respectively.
Option A:	$\mathrm{P}=641.03 \mathrm{~N}$
Option B:	$\mathrm{P}=540.65 \mathrm{~N}$
Option C:	$\mathrm{P}=680.24 \mathrm{~N}$
Option D:	$\mathrm{P}=560.65 \mathrm{~N}$
3.	Which of the following is not a projectile
Option A:	a bullet fired from a rifle
Option B:	a bomb dropped from an aeroplane
Option C:	hydrogen balloon floating in air
Option D:	a boy throw a ball oblique with vertical.
4.	A train enters curve of radius 800 m with a speed of $20 \mathrm{~m} / \mathrm{s}$, what will be the magnitude of tangential and normal acceleration at the instant the brakes are applied so that the train stops by covering a distance of 500 m along the curve.
Option A:	tangential acceleration $=0.4 \mathrm{~m} / \mathrm{s}^{2}$, normal acceleration $=0.5 \mathrm{~m} / \mathrm{s}^{2}$
Option B:	tangential acceleration $=0.4 \mathrm{~m} / \mathrm{s}^{2}$, normal acceleration $=-0.5 \mathrm{~m} / \mathrm{s}^{2}$
Option C:	tangential acceleration $=-0.4 \mathrm{~m} / \mathrm{s}^{2}$, normal acceleration $=-0.5 \mathrm{~m} / \mathrm{s}^{2}$
Option D:	tangential acceleration $=-0.4 \mathrm{~m} / \mathrm{s}^{2}$, normal acceleration $=0.5 \mathrm{~m} / \mathrm{s}^{2}$
5.	The point at which the total area of a plane figure is assumed to be concentrated is called
Option A:	Centre of gravity
Option B:	Central point
Option C:	Centroid
Option D:	Inertial point

6.	Find the centroid of the semicircle of radius 10 cm with center at the origin lying in the first and second quadrants.
Option A:	($0,-4.246 \mathrm{~cm}$)
Option B:	(0, 4.246 cm)
Option C:	($-4.246 \mathrm{~cm}, 0$)
Option D:	($4.246 \mathrm{~cm}, 0$)
7.	Kinematics of the rigid body is
Option A:	Study of geometry of motion considering the cause of motion
Option B:	Study of external forces acting on it without considering the geometry of motion
Option C:	Study of geometry of motion without considering the cause of motion
Option D:	Finding the reaction forces and moments at the supports
8.	A rod AB 26 m long leans against a vertical wall. The end A on the floor is drawn away from the wall at a rate of $24 \mathrm{~m} / \mathrm{s}$, when the end A of the rod is 10 m from the wall. What is the velocity of end B sliding down vertically.
Option A:	velocity of end $B=57 \mathrm{~m} / \mathrm{s}$
Option B:	velocity of end $B=10 \mathrm{~m} / \mathrm{s}$
Option C:	velocity of end $B=24 \mathrm{~m} / \mathrm{s}$
Option D:	velocity of end $B=12 \mathrm{~m} / \mathrm{s}$
9.	If three non parallel forces are in equilibrium then it should be
Option A:	collinear force system
Option B:	general force system
Option C:	non-concurrent force system
Option D:	concurrent force system
10.	A beam ABCD of 20 m long supported on two intermediate supports at B and C , 12 m apart, carries two concentrated load of 30 kN at left end A and 50 kN at right end D. How far away should the first support B be located from end A so that the reactions at both the supports are equal.
Option A:	support B be located from end $\mathrm{A}=5.5 \mathrm{~m}$
Option B:	support B be located from end $\mathrm{A}=6.5 \mathrm{~m}$
Option C:	support B be located from end $\mathrm{A}=7.5 \mathrm{~m}$
Option D:	support B be located from end $\mathrm{A}=8.5 \mathrm{~m}$
11.	According to \qquad the algebraic sum of external force and inertia force is equal to zero.
Option A:	D'alembert's principle
Option B:	Law of Conservation of Momentum
Option C:	Work Energy Principle
Option D:	Principle of Transmissibility of Forces
12.	A motorist travelling at a speed of $70 \mathrm{~km} / \mathrm{hr}$ suddenly applied brakes and halts after skidding 50 m . What is the acceleration of the motorist?
Option A:	Accerleration $=-2.78 \mathrm{~m} / \mathrm{s}^{2}$
Option B:	Accerleration $=2.78 \mathrm{~m} / \mathrm{s}^{2}$
Option C:	Accerleration $=-3.78 \mathrm{~m} / \mathrm{s}^{2}$
Option D:	Accerleration $=3.78 \mathrm{~m} / \mathrm{s}^{2}$

13.	Reaction of a roller support is always
Option A:	parallel to the roller base
Option B:	perpendicular to the roller base
Option C:	depends on the direction of loading
Option D:	Independent of the position of roller
14.	A beam $\mathrm{AB}, 8 \mathrm{~m}$ long is hinged at A and has a roller support at B . The roller support is inclined at an angle 30° to the horizontal. What is the reactions at A and B if the beam carries point load of 64 kN is at the centre of the beam.
Option A:	$\mathrm{H}_{\mathrm{A}}=18.47 \mathrm{kN}, \mathrm{V}_{\mathrm{A}}=32 \mathrm{kN}, \mathrm{R}_{\mathrm{B}}=36.95 \mathrm{kN}$
Option B:	$\mathrm{H}_{\mathrm{A}}=32 \mathrm{kN}, \mathrm{V}_{\mathrm{A}}=32 \mathrm{kN}, \mathrm{R}_{\mathrm{B}}=32 \mathrm{kN}$
Option C:	$\mathrm{H}_{\mathrm{A}}=18.47 \mathrm{kN}, \mathrm{V}_{\mathrm{A}}=36.95 \mathrm{kN}, \mathrm{R}_{\mathrm{B}}=32 \mathrm{kN}$
Option D:	$\mathrm{H}_{\mathrm{A}}=64 \mathrm{kN}, \mathrm{V}_{\mathrm{A}}=64 \mathrm{kN}, \mathrm{R}_{\mathrm{B}}=64 \mathrm{kN}$
15.	What happens to the kinetic energy of a moving object if the net work done is positive?
Option A:	The kinetic energy increases
Option B:	The kinetic energy decreases
Option C:	The kinetic energy remains the same
Option D:	The kinetic energy becomes negative
16.	A spring of stiffness $500 \mathrm{~N} / \mathrm{m}$ is placed horizontally with the fixed wall and a ball of mass 5 kg strikes the spring with linear velocity of $3 \mathrm{~m} / \mathrm{s}$. What is the maximum compression of the spring.
Option A:	0.003 m
Option B:	0.03 m
Option C:	0.3 m
Option D:	3 m
17.	Coefficient of friction is the
Option A:	Angle between normal reaction and the resultant of normal reaction and the limiting friction
Option B:	Ratio of limiting friction and normal reaction
Option C:	The friction force acting when the body is just about to move
Option D:	The friction force acting when the body is in motion
18.	A body of weight 500 N is pulled up along inclined plane having a inclination of 30° with the horizontal. If the coefficient of friction between the body and the plane is 0.3 and force is applied parallel to the inclined plane. What will be the force required to maintain an equilibrium?
Option A:	360 N
Option B:	370 N
Option C:	380 N
Option D:	390 N
19.	If a ball, initially at rest, is released on a flat surface from a height \mathbf{h} and it rebounds to a height \mathbf{h}^{\prime}, the coefficient of restitution is given by \qquad

Option A:	$\mathrm{e}=\sqrt{\frac{h}{h}}$
Option B:	$\mathrm{e}=\frac{h}{h}$
Option C:	$\mathrm{e}=\sqrt{\frac{h}{h}}$
Option D:	$\mathrm{e}=\frac{\boldsymbol{h}}{\boldsymbol{h}}$

Q2. A	Solve any Two
i.	Five forces $20 \mathrm{~N}, 30 \mathrm{~N}, 40 \mathrm{~N}, 50 \mathrm{~N}$ and 60 N respectively at one of the angular point of regular hexagon toward the other five points as shown in figure 1. Find their resultant in magnitude and direction.
ii.	A heavy roller with radius 14 cm and weighing 2000 N is pulled to the right by a pulling force T acting at an angle 30 with respect to horizontal as shown in figure 2. A 6 cm step stops the rolling motion of the roller. Find the magnitude of force T, to just start the motion of the roller. Also find the reaction at A.

Figure 3
ii. \quad Two blocks $\mathrm{A}(10 \mathrm{~kg})$ and $\mathrm{B}(28 \mathrm{~kg})$ released from rest on 30° incline, when they are 12 m apart. The coefficient of friction between the inclined plane and block A is 0.25 and the inclined plane and block B is 0.1 as shown in figure 4 .

In what time block A reaches the block B?

Figure 4

i.	A wheel, with an angular velocity $=5 \mathrm{rad} / \mathrm{sec}$ clockwise and radius 1 m rolls without slipping on a horizontal surface. Determine the velocities of the points B and D as shown in figure 5. Also locate Instantaneous Centre of Rotation. Take Distance $\mathrm{OD}=0.6 \mathrm{~m}$ Figure 5
ii.	A block weighing 500 N just starts moving down a rough inclined plane at an angle 30° with respect to horizontal, when supported by a force of 200 N acting parallel to the plane in upward direction. Find the coefficient of friction between the inclined plane and the block.
iii.	Prove that for a perfectly elastic body, two equal masses participating in collision exchange their velocities.
Q3. B	Solve any One 10 marks each
1.	Determine the reactions at hinged support and roller support as shown in figure 6. Figure 6
ii.	A block of mass 80 kg is compressed against a spring as shown in figure 7. What will be the horizontal speed of block at point B and also how far from point B (distance x) will the block strike the plane at point A . Take a) Free length of spring $=0.9 \mathrm{~m}$ b) Spring stiffness, $\mathrm{k}=40 \times 10^{2} \mathrm{~N} / \mathrm{m}$ c) Coefficient of friction $=0.2$ d) Motion B-A is projectile motion.

Figure 7

University of Mumbai

Examination 2020 under cluster 3 (Lead College: FCRIT)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: F.E. (All branches) (Choice Based)
Curriculum Scheme: Rev2019
Examination: FE Semester I
Course Code: FEC104 and Course Name: Engineering Mechanics

Time: 2 hours

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	A
Q2.	A
Q3.	C
Q4	D
Q5	C
Q6	B
Q7	C
Q8.	B
Q9.	D
Q10.	B
Q11.	A
Q12.	C
Q13.	B
Q14.	A
Q15.	A
Q16.	C
Q17.	B
Q18.	C
Q19.	A
Q20.	B

