University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	Let $A = \{2,3,4,5,6\}$ and let R1,R2 be relations on A such that	
	$R1=\{(a,b) a-b=2 \}$ and	
	$R2=\{(a,b) a+1=b \text{ or } a=2b\}$	
	Find the composite relation R2.R1?	
Option A:	$\{(4,3),(5,4),(6,2),(6,5)\}$	
Option B:	$\{(3,2),(5,4),(4,3)\}$	
Option C:	$\{(5,2),(6,3)\}$	
Option D:	$\{(2,3),(3,4),(4,5),(5,6)\}$	
2.	Which of the following is the correct representation of the sentence "Someone is	
	liked by everyone ".	
Option A:	$(\exists x)(\exists y)$ likes(x,y)	
Option B:	$(\forall x)(\forall y)$ likes(x,y)	
Option C:	$(\exists y)(\forall x)$ likes(x,y)	
Option D:	$(\forall x)(\exists y)$ likes(x,y)	
3.	Draw the Hasse diagram of D30.	
	i) It is Complemented Lattice	
	ii) It is Distributive Lattice	
	Which of the above statement is True?	
Option A:	Only i	
Option B:	Only ii	
Option C:	Both i and ii	
Option D:	Neither i nor ii	
4.	Consider the set N of positive integers, and let * denote the operation of least	
	common multiple(lcm) on N. Which of the following sentence is True?	
Option A:	(N,*) is not a Semi group.	
Option B:	(N,*) is commutative Semi group	
Option C:	(N,*) is not commutative Semi group.	
Option D:	None of the Above.	

5.	How many two digits or three digits numbers can be formed using the digits	
5.	1,2,3,4,5,6,7,8 and 9, if no digits are repeated ?	
Option A:	210	
Option B:	24	
Option C:	212	
Option D:	252	
6. Consider the following subsets of the positive integers N. Which of th		
	is not closed under multiplication operation?	
Option A:	A={0,1}	
Option B:	$E = \{1, 3, 5, \dots\}$	
Option C:	C={x: x is prime}	
Option D:	$F = \{0, 1, 2\}$	
7.	If every vertex of simple graph has same degree it is called as	
Option A:	Bipartite Graph	
Option B:	Regular Graph	
Option C:	Planner Graph	
Option D:	Sub graph	
8.	The less than relation, <, on real is	
Option A:	A Partial ordering since it is asymmetric and reflexive.	
Option B:	A partial ordering since it is anti-symmetric and reflexive.	
Option C:	Not a partial ordering because it is not asymmetric and not reflexive.	
Option D:	Not a partial ordering because it is not anti-symmetric and not reflexive.	
9.	Consider set of integers from 1 to 250. Find how many of these numbers are	
	divisible by 5 or 6 but not by 8?	
Option A:	83	
Option B:	69	
Option C:	100	
Option D:	31	
10.	Consider $G = \{1,5,7,11,17\}$ under multiplication modulo 18. Find inverse of 5,	
	7and 17 ?	
Option A:	11,17 and 13	
Option B:	11,13 and 17	
Option C:	11, 17 and 7	
Option D:	13,11 and 7	
11	The following graph is	
11.	The following graph is	
	A B C	
	N N 1	
Option A:	Bipartite Graph	
Option B:	Complete Bipartite Graph	
	Comprete Diputite Origin	

Ontion C:	Eulorian Cranh		
Option C:	Eulerian Graph		
Option D:	Eulerian but not Bipartite Graph		
12.	The set of integers Z with binary operation '*' defined as $a*b=a+b+1$ for $a,b \in Z$, is a group. The identity element of this group is		
Option A:	0		
Option B:	1		
Option C:	-1		
Option D:	12		
13.	How many persons must be chosen in order that at least five of them will have birthdays in the same calendar month?		
Option A:	28		
Option B:	69		
Option C:	49		
Option D:	52		
14.	Which of the following is true for above graph? i) It is Eulerian Graph ii) It is Hamiltonian Graph		
Option A:	Only i		
Option B:	Only ii		
Option D:	Both i and ii		
Option D:	Neither i nor ii		
15.	A Poset in which every pair of elements has both a least upper bound and a greatest lower bound is termed as		
Option A:	Walk		
Option B:	Trail		
Option C:	Sub lattice		
Option D:	Lattice		
16.	State the type of function for following example "To each country assign the number of people living in the country"		
Option A:	Many-One		
Option B:	One-Many		
Option C:	One-One		
Option D:	Many-Many		

17.	Let P: We should be trustworthy. Q: We should be committed. R: We should be		
	overconfident. Then 'We should be trustworthy or committed but n		
	overconfident.' is best represented by?		
Option A:	PVQAR		
Option B:	~PV~QVR		
Option C:	$P V Q \land \neg R$		
Option D:	$P \wedge \sim Q \wedge R$		
•			
18.	Total how many Cut Vertex exists in the following graph?		
	a b f e g d i h		
Option A:	2		
Option B:	4		
Option C:	3		
Option D:	1		
•			
19.	The binary relation $\{(a,a), (b,a), (b,b), (b,c), (b,d), (c,a), (c,b)\}$ on the set $\{a,b,c\}$ is		
Option A:	irreflexive, symmetric and transitive		
Option B:	reflexive, symmetric and transitive		
Option C:	irreflexive and antisymmetric		
Option D:	neither reflexive, nor irreflexive but transitive		
20.	Which rule of inference is used in this argument?		
	"No humans can fly. John is human. Therefore John can not fly."		
Option A:	Universal instantiation		
Option B:	Existential instantiation		
Option C:	Universal generalization		
Option D:	Existential generalization		

Q2	
А	Solve any Two 5 marks each
i.	Let $A=\{1,2,3,4,5\}$, $R=\{(a,b) (a+b) \text{ is even}\}$. R is a relation on set A. Check whether R s an equivalence relation?
ii.	 X={2,3,6,1,24,36} R on X ={(x,y) ∈ R, x divides y} a) Construct Hasse diagram b) Maximum and Minimal elements? c) Give Chain and Ant chains.

	d) Maximum length of chain?
	e) Is a poset lattice?
iii.	Define the following with suitable example
	a)Ring b) Cyclic Group c) Monoid d)Normal Subgroup e) Planner Graph
В	Solve any One 10 marks each
i.	Define with example Euler path, Euler circuit, Hamiltonian path and Hamiltonian
	circuit. Determine if following diagram has Euler path, Euler circuit, Hamiltonian
	path and Hamiltonian circuit and state the path/circuit.
	- 6
	7
ii.	Find the number of code word generated by the parity check matrix H given below. Find all the code words generated.
	$H = \begin{vmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{vmatrix}$

Q3.	
А	Solve any Two 5 marks each
A i.	Define Isomorphic Graph. Determine if following graphs G1 and G2 are isomorphic or not.
ii.	Convert into CNF: $((P \Box Q) \Box R)$
iii.	Functions f,g,h are defined on a set X={a,b,c} as f={(a,b),(b,c),(c,a)} g={(a,b),(b,a),(b,b)} h={(a,a),(b,b),(c,a)} i) Find fog, gof . Are they equal? ii) Find fogoh and fohog?

В	Solve any One 10 marks each
i.	Prove that $(z5,+5)$ is a Abelian group.
ii.	Solve the recurrence relation for Fibonacci sequence 1,1,2,3,5,8,13.

University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory

Time: 2 hour

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	С
Q3.	С
Q4	В
Q5	D
Q6	С
Q7	В
Q8.	D
Q9.	В
Q10.	В
Q11.	А
Q12.	С
Q13.	С
Q14.	А
Q15.	D
Q16.	С
Q17.	С
Q18.	В
Q19.	D
Q20.	А

Q2. A

Definition of Equivalence relation

 1 marks
 Prove that relation is equivalence
 relation – 4 marks

ii)

a. Construct Hasse diagram

- b. Maximum elements ={24,36} and Minimal elements={3,2}
- c. Chain = {3,6,12,24}, {3,6,12,36}, {2,6, 12,24} and {2,6,12,36} and Ant chains={2,3} and {24,36}
- d. Maximum length of chain? 4
- e. Is a poset lattice? No As (2 and 3) has no lower bound and (24,36) has no upper bound
- iii) Definition ¹/₂ marks and example ¹/₂ mark each
- B) Solve any one

i) definition 1/2 mark example 1 mark 11/2 * 4 = 6 marks for correct path/circuit finding 4 marks.

ii) Ans :

Q3. I) Definiton with example 2 marks

These are not isomorphic graphs, steps 3 marks.

ii) Convert to CNF, apply logic rules,

and get equivalent form

Ans: (P v R) ^(~Q v R)

iii) Gof= $\{(1,3),(3,1),(2,2)$, gof = $\{(1,1),(2,3),(3,2)$ Fog not equal to gof Fogoh = $\{(1,3),(2,2),(3,3)\}$ Fohog = $\{((1,3),(2,2),(3,2)\}$

B solve any one

- i) To prove (Z5, +5) is Abelian group Definition of Abelian Group – 2 marks, stepwise explanation – 8 marks
- ii) Recurrence relation Fibonacci sequence

Sol: Gr : Fibomacci Sequence : $F_n = F_{n+1} + F_{n-2}$ is is a homogeneous equation of order 2 characteristic eqn : $Y^2 - Y - 1 = 0$ a=1, b= $Y = -(-1) \pm \sqrt{(-1)^2 - h(1) - 1} = \frac{1 \pm \sqrt{5}}{2}$ $\frac{Y(-1) \pm \sqrt{(-1)^2 - h(1) - 1}}{2} = \frac{1 \pm \sqrt{5}}{2}$ $\frac{Y(-1) \pm \sqrt{(-1)^2 - h(1) - 1}}{2} = \frac{1 \pm \sqrt{5}}{2}$ $\frac{Y(-1) \pm \sqrt{(-1)^2 - h(1) - 1}}{2} = \frac{1 \pm \sqrt{5}}{2}$ $\frac{Y(-1) \pm \sqrt{(-1)^2 - h(1) - 1}}{2} = \frac{1 \pm \sqrt{5}}{2}$ $\frac{Y(-1) \pm \sqrt{(-1)^2 - h(1) - 1}}{2} = \frac{1 \pm \sqrt{5}}{2}$ $\frac{Y(-1) \pm \sqrt{(-1)^2 - h(1) - 1}}{2} = \frac{1 \pm \sqrt{5}}{2}$ $\frac{Y(-1) \pm \sqrt{(-1)^2 - h(1) - 1}}{2} = \frac{1 \pm \sqrt{5}}{2}$ $\frac{Y(-1) \pm \sqrt{(-1)^2 - 1}}{2}$ $\frac{Y(-1) \pm \sqrt{(-1)^2 - 1}}{2}$