University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021
to $\mathbf{2 0}^{\text {th }}$ January 2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester III
Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Let $\mathrm{A}=\{2,3,4,5,6\}$ and let $\mathrm{R} 1, \mathrm{R} 2$ be relations on A such that $\mathrm{R} 1=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}-\mathrm{b}=2\}$ and $\mathrm{R} 2=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}+1=\mathrm{b}$ or a=2b $\}$ Find the composite relation R2.R1?
Option A:	$\{(4,3),(5,4),(6,2),(6,5)\}$
Option B:	$\{(3,2),(5,4),(4,3)\}$
Option C:	$\{(5,2),(6,3)\}$
Option D:	$\{(2,3),(3,4),(4,5),(5,6)\}$
2.	Which of the following is the correct representation of the sentence "Someone is liked by everyone ".
Option A:	$(\exists \mathrm{x})(\exists \mathrm{y})$ likes(x,y)

5.	How many two digits or three digits numbers can be formed using the digits $1,2,3,4,5,6,7,8$ and 9 , if no digits are repeated ?
Option A:	210
Option B:	24
Option C:	212
Option D:	252
6.	Consider the following subsets of the positive integers N. Which of the following is not closed under multiplication operation?
Option A:	$\mathrm{A}=\{0,1\}$
Option B:	$\mathrm{E}=\{1,3,5, \ldots$.
Option C:	$\mathrm{C}=\{\mathrm{x}: \mathrm{x}$ is prime $\}$
Option D:	$\mathrm{F}=\{0,1,2\}$
7.	If every vertex of simple graph has same degree it is called as
Option A:	Bipartite Graph
Option B:	Regular Graph
Option C:	Planner Graph
Option D:	Sub graph
8.	The less than relation, $<$, on real is
Option A:	A Partial ordering since it is asymmetric and reflexive.
Option B:	A partial ordering since it is anti-symmetric and reflexive.
Option C:	Not a partial ordering because it is not asymmetric and not reflexive.
Option D:	Not a partial ordering because it is not anti-symmetric and not reflexive.
9.	Consider set of integers from 1 to 250 . Find how many of these numbers are divisible by 5 or 6 but not by 8 ?
Option A:	83
Option B:	69
Option C:	100
Option D:	31
10.	Consider $\mathrm{G}=\{1,5,7,11,17\}$ under multiplication modulo 18 . Find inverse of 5 , 7and 17 ?
Option A:	11,17 and 13
Option B:	11,13 and 17
Option C:	11,17 and 7
Option D:	13,11 and 7
11.	The following graph is \qquad
Option A:	Bipartite Graph
Option B:	Complete Bipartite Graph

Option C:	Eulerian Graph
Option D:	Eulerian but not Bipartite Graph
12.	The set of integers Z with binary operation '*' defined as $\mathrm{a}^{*} \mathrm{~b}=\mathrm{a}+\mathrm{b}+1$ for $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$, is a group. The identity element of this group is
Option A:	0
Option B:	1
Option C:	-1
Option D:	12
13.	How many persons must be chosen in order that at least five of them will have birthdays in the same calendar month?
Option A:	28
Option B:	69
Option C:	49
Option D:	52
14.	Which of the following is true for above graph? i) It is Eulerian Graph ii) It is Hamiltonian Graph
Option A:	Only i
Option B:	Only ii
Option C:	Both i and ii
Option D:	Neither i nor ii
15.	A Poset in which every pair of elements has both a least upper bound and a greatest lower bound is termed as
Option A:	Walk
Option B:	Trail
Option C:	Sub lattice
Option D:	Lattice
16.	State the type of function for following example "To each country assign the number of people living in the country"
Option A:	Many-One
Option B:	One-Many
Option C:	One-One
Option D:	Many-Many

17.	Let P: We should be trustworthy. Q: We should be committed. R: We should be overconfident. Then 'We should be trustworthy or committed but not overconfident.' is best represented by?
Option A:	$\mathrm{PV} \mathrm{Q} \wedge \mathrm{R}$
Option B:	$\sim \mathrm{PV} \sim \mathrm{Q} \mathrm{V} \mathrm{R}$
Option C:	$\mathrm{P} V \mathrm{Q} \wedge \sim \mathrm{R}$
Option D:	$P \wedge \sim Q \wedge R$
18.	Total how many Cut Vertex exists in the following graph?
Option A:	2
Option B:	4
Option C:	3
Option D:	1
19.	The binary relation $\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{b}, \mathrm{c}),(\mathrm{b}, \mathrm{d}),(\mathrm{c}, \mathrm{a}),(\mathrm{c}, \mathrm{b})\}$ on the set $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ is
Option A:	irreflexive, symmetric and transitive
Option B:	reflexive, symmetric and transitive
Option C:	irreflexive and antisymmetric
Option D:	neither reflexive, nor irreflexive but transitive
20.	Which rule of inference is used in this argument? "No humans can fly. John is human. Therefore John can not fly."
Option A:	Universal instantiation
Option B:	Existential instantiation
Option C:	Universal generalization
Option D:	Existential generalization

Q2	
A	Solve any Two
i.	Let $A=\{1,2,3,4,5\}, R=\{(a . b) \mid(a+b)$ is even $\} . R$ is a relation on set A. Check whether R an equivalence relation?
ii.	$\mathrm{X}=\{2,3,6,1,24,36\}$ R on $\mathrm{X}=\{(\mathrm{x}, \mathrm{y}) \in \mathrm{R}, \mathrm{x}$ divides y$\}$ a) Construct Hasse diagram b) Maximum and Minimal elements? c) Give Chain and Ant chains.

	d) Maximum length of chain? e) Is a poset lattice?
iii.	Define the following with suitable example a)Ring b) Cyclic Group c) Monoid d)Normal Subgroup e) Planner Graph
B	Solve any One 10 marks each
i.	Define with example Euler path, Euler circuit, Hamiltonian path and Hamiltonian circuit. Determine if following diagram has Euler path, Euler circuit, Hamiltonian path and Hamiltonian circuit and state the path/circuit.
ii.	Find the number of code word generated by the parity check matrix H given below. Find all the code words generated. $\mathrm{H}=\left\|\begin{array}{llllll} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{array}\right\|$

Q3.	
A	Solve any Two 5 marks each
i.	Define Isomorphic Graph. Determine if following graphs G1 and G2 are isomorphic or not.
ii.	Convert into CNF: ((P $\square \mathrm{Q}) \square \mathrm{R})$
iii.	$\begin{aligned} & \text { Functions } \mathrm{f}, \mathrm{~g}, \mathrm{~h} \text { are defined on a set } \mathrm{X}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \text { as } \\ & \mathrm{f}=\{(\mathrm{a}, \mathrm{~b}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{a})\} \\ & \mathrm{g}=\{(\mathrm{a}, \mathrm{~b}),(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{~b})\} \\ & \mathrm{h}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{~b}),(\mathrm{c}, \mathrm{a})\} \\ & \text { i) Find fog, gof. Are they equal? } \\ & \text { ii) Find fogoh and fohog? } \end{aligned}$

B	Solve any One
i.	Prove that $(z 5,+5)$ is a Abelian group.
ii.	Solve the recurrence relation for Fibonacci sequence $1,1,2,3,5,8,13$.

University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)
Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021
to $20^{\text {th }}$ January 2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester III
Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory
Max. Marks: 80

Question Number	Correct Option Enter either 'A' or ' \mathbf{B}^{\prime} ' or \mathbf{C}^{\prime} or ' \mathbf{D}^{\prime} '
Q1.	B
Q2.	C
Q3.	C
Q4	B
Q5	D
Q6	C
Q7	B
Q8.	D
Q9.	B
Q10.	B
Q11.	C
Q12.	C
Q13.	A
Q14.	D
Q15.	C
Q16.	C
Q17.	B
Q18.	D
Q19.	A
Q20.	

Q2. A
i) Definition of Equivalence relation - 1 marks

Prove that relation is equivalence relation - 4 marks
ii)
a. Construct Hasse diagram

b. Maximum elements
$=\{24,36\}$ and Minimal
elements $=\{3,2\}$
c. \quad Chain $=$
$\{3,6,12,24\},\{3,6,12,36\},\{2,6$, $12,24\}$ and $\{2,6,12,36\}$ and Ant chains $=\{2,3\}$ and $\{24,36\}$
d. Maximum length of chain? 4
e. Is a poset lattice? No

As (2 and 3) has no lower bound and $(24,36)$ has no upper bound
iii) Definition $1 / 2$ marks and example
$1 / 2$ mark each
B) Solve any one
i) definition $1 / 2$ mark example 1 mark $11 / 2 * 4=6$ marks for correct path/ circuit finding 4 marks.
ii) Ans :

Q3. I) Defintion with example 2 marks
These are not isomorphic graphs , steps 3 marks.
ii) Convert to CNF , apply logic rules, and get equivalent form

Ans: $(\mathrm{P} \vee \mathrm{R})^{\wedge}(\sim \mathrm{Q} v \mathrm{R})$
iii) \quad Gof $=\{(1,3),(3,1),(2,2)$
, got =\{(1,1),(2,3),(3,2)

Fog not equal to oof
Fogoh $=\{(1,3),(2,2),(3,3)\}$
Fohog $=\{((1,3),(2,2),(3,2)\}$
B solve any one
i) To prove $(\mathrm{Z} 5,+5)$ is Abelian group Definition of Abelian Group - 2 marks, stepwise explanation -8 marks
ii) Recurrence relation Fibonacci sequence
$Y \equiv \frac{-(-1) \pm \sqrt{(-1)^{2}-12(1)-1}}{2(1)}=\frac{1 \pm \sqrt{5}}{2}$

$$
r_{1}=\frac{1+\sqrt{5}}{2}, r_{2}=\frac{1-F}{2}, \rightarrow \text { Real Eg distinct }
$$

Genera Solution: Real efdestinct :F(n)=Arin $+B r$ $F(n)=A\left[\frac{1+\sqrt{5}}{x}\right]^{n}+B\left[\frac{1-\sqrt{5}}{2}\right]^{n}$
To Find constant: $F_{1}=1 \quad, F_{2}=1$.
$n=1, F(1)=A\left[\frac{1+\sqrt{5}}{2}\right]^{1}+\left[\frac{1-\sqrt{5}}{2}\right]$
$\left.1=\frac{1}{2}[A+B]+\frac{\sqrt{5}}{2}[A+B]\right]=(1)$
$n=2, k(2)=A\left[\frac{1+\sqrt{5}}{2}\right]^{2}+B\left[\frac{1-\sqrt{5}}{2}\right]^{2}$

$$
=A\left[\frac{1+5+2 \sqrt{5}}{4}\right]+B\left[\frac{1+5-2 \sqrt{5}}{4}\right]
$$

$$
=A\left[\frac{3+\sqrt{5}}{2}\right]+B\left[\frac{3-\sqrt{5}}{2}\right]
$$

$$
\text { (2)-(1) } \Rightarrow 0=A+B \Rightarrow B=-A
$$

$$
\operatorname{SuD} B \operatorname{Bin}(D) ; 1=\frac{1}{2}[A-A]+\sqrt{5}[A-(-A)] \Rightarrow \sqrt{2}=
$$

Solution: $F\left(n=\frac{-1}{\sqrt{5}}=\frac{1}{\sqrt{n}}\left[\frac{1+\sqrt{5}}{2}\right]^{n}+\left(-\frac{1}{\sqrt{2}}\left[\frac{1-\sqrt{5}}{22}\right]^{n}, 1\right.\right.$

