University of Mumbai Examination 2020 under cluster 4 (Lead College: PCE)

Examinations Commencing from 10th April 2021 to 17th April 2021 Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: SE Semester: III(for Direct Second Year-DSE)

Course Code: CSC303 and Course Name: Data Structure

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which among the following is not a linear data structure?
Option A:	Stack
Option B:	Queue
Option C:	Tree
Option D:	Array
2.	Using division method, in a given hash table of size 114, the key 131 will be placed at position.
Option A:	31
Option B:	17
Option C:	14
Option D:	16
3.	For the implementation of parentheses balancing program using stack. What is the maximum number of parentheses that will remain on the stack [({ () })][[]{([])}?
Option A:	
Option B:	1
Option C:	2
Option D:	3
4.	Which of the following data structure is based on LIFO principle?
Option A:	Tree
Option B:	Graph
Option C:	Oueue
Option D:	Stack
5.	If we insert the values 25, 14, 9, 18 and 37 in the Binary Search Tree then degree
Ontion A:	
Option D:	
Option B:	
Option C:	
Option D:	5
6.	Given the following input (22, 34, 71, 79, 89, 51, 73, 99) and the hash function x mod 10, which of the following statements are true?

	i) 79, 89, 99 hash to the same value	
	ii) 71, 51 hash to the same value	
	iii) All elements hash to the same value	
	iv) Each element hashes to a different value	
Option A:	i only	
Option B:	ii only	
Option C:	i and ii	
Option D:	iii or iv	
•		
7.	What will be the front and rear of an initially empty queue after the following operations on it? enqueue(12), enqueue(10), enqueue(3), dequeue(), enqueue(18), dequeue(), enqueue(15), enqueue(15), dequeue()	
Option A:	12, 15	
Option B:	15, 18	
Option C:	18, 15	
Option D:	15, 15	
8.	In a Doubly linked list which statement is correct for dynamically allocating a memory for the node? struct node { struct node *prev; char data; struct node *next; }: typdef struct node NODE; NODE *ptr;	
Option A:	<pre>ptr=(NODE*)malloc(sizeof(NODE));</pre>	
Option B:	ptr=(NODE*)malloc(NODE);	
Option C:	<pre>ptr=(NODE*)malloc(sizeof(NODE*));</pre>	
Option D:	ptr=(NODE)malloc(sizeof(NODE));	
9.	Which node pointers should be updated if a node B present between node A and node C of a doubly linked list is to be deleted.	
Option A:	NEXT pointer of A, PREVIOUS pointer of B, NEXT pointer of C and PREVIOUS pointer of C	
Option B:	NEXT pointer of A, PREVIOUS pointer of A, NEXT pointer of C and PREVIOUS pointer of C	
Option C:	NEXT pointer of A, PREVIOUS pointer of C	
Option D:	PREVIOUS pointer of A, NEXT pointer of C	
10.	Consider the Binary Search Tree given below and find the result of in-order traversal sequence.	

Option A:	60, 30, 14, 78, 72, 89	
Option B:	14, 30, 72, 89, 78, 60	
Option C:	60, 30, 78, 14, 72, 89	
Option D:	14, 30, 60, 72, 78, 89	
11.	You are given a stack with elements 2, 5, 8, 3, 9, 10 where 10 is the top of the stack. The elements are popped one-by-one and enqueued into a queue, until the stack becomes empty. The elements are again dequeued from the queue one-by-one and pushed into the stack. What is the final arrangement of elements in the stack (from top to bottom)?	
Option A:	10, 9, 3, 8, 5, 2	
Option B:	2, 5, 8, 3, 9, 10	
Option C:	2, 3, 5, 8, 9, 10	
Option D:	: 10, 9, 8, 5, 3, 2	
12.	Which of the following is false about a doubly linked list?	
Option A:	We can navigate in both the directions	
Option B:	It requires more space than a singly linked list	
Option C:	The insertion and deletion of a node take a bit longer	
Option D:	Implementing a doubly linked list is easier than singly linked list	
13.	The Data structure used in the standard implementation of Breadth First Search is?	
Option A:	Tree	
Option B:	Linked List	
Option C:	Queue	
Option D:	Stack	
14.	In the linked list implementation of a queue, where does a new element get inserted?	
Option A:	At the head of the linked list	
Option B:	At the tail of the linked list	
Option C:	At the centre position in the linked list	
Option D:	After the specified position in a linked list	
15.	Which type of linked list begins with a pointer to the first node and each node contains a pointer to the next node, and the pointer in the last node points back to the first node?	
Option A:	Singly linked list	

Option B:	Doubly linked list		
Option C:	Circular singly linked list		
Option D:	Circular doubly linked list		
16.	What will be the topological ordering for the below graph.		
Option A [•]	123456		
Option B:	123465		
Option C:	132456		
Option D:	124536		
17.	Deletion and Insertion operation in Queue and Stack are known as?		
Option A:	Enqueue and Dequeue, Push and Pop		
Option B:	Push and Pop, Enqueue and Dequeue		
Option C:	Pop and Push, Dequeue and Enqueue		
Option D:	Dequeue and Enqueue, Pop and Push		
18.	After adding a left child to the node 15 in an AVL Tree below, how many nodes will be unbalanced?		
Option A:	1		
Option B:	2		
Option C:	3		
Option D:	4		

19.	Degree of a leaf node is
Option A:	0
Option B:	1
Option C:	2
Option D:	3
20	When the left sub-tree of the tree is one level higher than that of the right
_0.	sub-tree, then the balance factor is
Option A:	sub-tree, then the balance factor is 0
Option A: Option B:	sub-tree, then the balance factor is 0 1
Option A: Option B: Option C:	sub-tree, then the balance factor is 0 1 -1

Q2	Solve any Four out of Six 5 marks each
А	What is Data Structure? List different data structures along with applications.
В	Write an algorithm to check the well-formedness of parenthesis in an algebraic expression using Stack data structure.
С	<pre>Write functions in 'C' for the following operations of Input Restricted Deque. i) insert_right() ii) delete_left() iii) delete_right()</pre>
D	Make a comparison between linked list and linear array. Which one will you prefer to use and when?
Е	Construct Huffman tree and determine the code for each symbol in the string "SUCCESSFUL".
F	Show Depth First Search traversal for the following graph with all the steps.

Q3	Solve any	y Two Questions out of Three	10 marks each
A	Write a p	rogram to perform the following operations on doubly linked list:	
	i)	Insert a node in the beginning	
	ii)	Delete a node from the end	
	iii)	Search for a given element in the list	
	-		

	iv) Display the list
В	Insert the following elements in an AVL tree: 25, 44, 58, 15, 19, 11, 37, 32. Explain different rotations that can be used.
С	Using modulo division method, hash the following elements in a table of size 10. Use Linear probing and Quadratic probing to resolve the collisions. 28, 55, 71, 67, 11, 10, 90, 44

University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester: III(for Direct Second Year-DSE)

Course Code: CSC303 and Course Name: Data Structure

Time: 2 hour

Max. Marks: 80

Question	Correct Option (Enter either 'A' or 'B'
Number	or 'C' or 'D')
Q1.	С
Q2.	В
Q3.	В
Q4	D
Q5	С
Q6	С
Q7	С
Q8.	А
Q9.	С
Q10.	D
Q11.	В
Q12.	D
Q13.	С
Q14.	В
Q15.	С
Q16.	D
Q17.	D
Q18.	С
Q19.	А
Q20.	В

Solve any Four out of Six5 marks each		
What is Data Str	ucture? List different data structures along with applications.	
Solution:	Solution:	
A data structure efficiently. Diffe	is a way of storing and organizing the data so that the data can be used rent kinds of data structures are suited to different kinds of applications:	
Data Structures	Applications	
Arrays	• Arrangement of leader-board of a game can be done simply through arrays to store the score and arrange them in descending order to clearly make out the rank of each player in the game	
	• 2D arrays, commonly known as, matrix, are used in image processing.	
Stacks	Converting infix to postfix expressions.History of visited websites	
Queues	 Operating System uses queue for job scheduling. To handle congestion in networking queue can be used. 	
Linked List	 Web pages can be accessed using the previous and the next URL links which are linked using linked list. The music players also use the same technique to switch between music. 	
Trees	Databases uses tree data structures for indexing.Huffman coding	
Graphs	 Facebook's Graph API uses the structure of Graphs. Networking components has huge application of graph 	
Definition – 1M		
Any four data stru Write an algorithm	<u>ictures along with application – 4M</u> n to check the well-formedness of parenthesis in an algebraic expression	
using Stack data s	structure.	
Solution:		
Step 1: Scan the e Step 2: Set flag =	expression from left to right. 1	
If symb	bol is '(' or '{' or '[', push it on the stack.	
If symbols If stack	bol is ')' or '}' or ']', then k is empty, then set flag = 0	
	Solve any Four o What is Data Str Solution: A data structure efficiently. Diffe Data Structures Arrays Stacks Queues Linked List Trees Graphs Definition – 1M Any four data stru Write an algorithr using Stack data s Solution: Step 1: Scan the e Step 2: Set flag = Step 3: Repeat un If symt Any four data stru	

```
Else
                      pop top of the stack and place it in temp.
                      If symbol is ')' and temp is either '{' or '[', then set flag=0 and GOTO step 5
                      If symbol is '}' and temp is either '(' or '[', then set flag=0 and GOTO step 5
                      If symbol is ']' and temp is either '(' or '{', then set flag=0 and GOTO step 5
     Step 4: If stack is not empty, then set flag=0 and GOTO step 5
     Step 5: If flag =1, then Print "Valid expression"
                Else Print "Invalid expression"
     Step 6: END
     Write functions in 'C' for the following operations of Input Restricted Deque.
                 insert right()
         i)
         ii)
                 delete left()
         iii)
                 delete right()
     Solution:
     #define MAX 10
     int deque[MAX];
     int left = -1, right = -1;
     void insert right()
     {
          int val;
          printf("\n Enter the value to be added:");
          scanf("%d", &val);
          if((left == 0 && right == MAX-1) || (left == right+1))
          {
                printf("\n OVERFLOW");
               return;
С
          }
          if (left == -1)
          {
              left = 0;
              right = 0;
          }
          else
          {
               if(right == MAX-1)
                    right = 0;
               else
                    right = right+1;
          }
          deque[right] = val ;
     }
     void delete_left()
     {
          if (left == -1)
```

```
{
             printf("\n UNDERFLOW");
              return ;
          }
          printf("\n The deleted element is : %d", deque[left]);
          if(left == right)
         {
              left = -1; right = -1;
          }
         else
         {
               if(left == MAX-1)
                    left = 0;
               else
                    left = left+1;
         }
     }
     void delete right()
     {
          if (left == -1)
          {
               printf("\n UNDERFLOW");
               return ;
          }
          printf("\n The element deleted is : %d", deque[right]);
          if(left == right)
          {
               left = -1; right = -1;
          }
          else
          {
               if(right == 0)
                      right=MAX-1;
               else
                      right=right-1;
         }
     }
     Insert_right() - 2M
     Delete left() - 1.5M
     Delete_right() - 1.5M
     Make a comparison between linked list and linear array. Which one will you prefer to use
     and when?
D
     Soluiton:
     1M for each point
```

Arrays		Linked List
An array	is a collection of elements of a	A linked list is a collection of nodes where
similar da	ita type.	nodes consists of two parts, i.e., data and
		address.
Array ele	ments store in a contiguous	Linked list elements can be stored
memory 1	ocation.	anywhere in the memory or randomly
		stored.
Memory	s allocated at compile-time.	Memory is allocated at run time.
Accessing	g any element in an array is faster	Accessing an element in a linked list is
as the element	ment in an array can be directly	slower as it starts traversing from the first
accessed	through the index.	element of the linked list.
An array	is suitable for applications in	If the maximum size is not known
which the	maximum size is known ahead of	beforehand, we could use a linked list.
time.		
Construct	Huffman tree and determine	the code for each symbol in the string
"SUCCES	SFUL".	
Solution:		
	$\sqrt{0}$ $\sqrt{1}$	
	(4)(6)	
	\rightarrow	
	$\begin{pmatrix} 2 \end{pmatrix} \xrightarrow{3} \begin{pmatrix} 3 \end{pmatrix}$	
E		1
	$\left(\begin{array}{c} 1 \end{array} \right)$	
C L		
Charact	er Code	
S	10	
Huffman T	ree - 4M	
Code for e	ach character – 1M	

Q3	Solve any Two Questions out of Three 10 marks each
	Write a program to perform the following operations on doubly linked list:
	i) Insert a node in the beginning
	ii) Delete a node from the end
	iii) Search for a given element in the list
	iv) Display the list
А	
11	Node definition – 1M
	Main function – 1M
	Insert Beginning – 2M
	Delete $End - 2M$
	Search – 2M
	Display – 2M
	Insert the following elements in an AVL tree: 25, 44, 58, 15, 19, 11, 37, 32. Explain
	different rotations that can be used.
	19
	15 44
р	
В	
	11 32 58

	AVL tree – 8M
	Explanation of different rotations used – 2M
	Using modulo division method, hash the following elements in a table of size 10. Use
	Linear probing and Quadratic probing to resolve the collisions. 28, 55, 71, 67, 11,
	10, 90, 44
C	
	Writing all steps for calculating array index for given data – 3M
	Linear probing – 3M
	Quadratic probing – 4M